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Abstract 

Music expression is often regarded as an elusive phenomenon requiring “a complicated 

and mysterious analysis” (Matravers 2001, 225). However, several aspects of performance 

expression can be investigated using modern computational and musicological methods. In organ 

music, because the organist has only limited control over local timbre variations or note intensity, 

timing often becomes the main expressive parameter by which the performer conveys most of the 

instrument’s musical expressivity. Thus, my project is dedicated to the investigation of timing as 

the most important tool to create an expressive performance.  

The principal goal of my research is to introduce a single timing parameter, temporal 

elasticity, use it to describe the expressive impact quantitatively and find such values of this 

parameter for the German late Romantic organ music, which would be, on the one hand, 

stylistically appropriate, and on the other hand, emotionally comprehensible for the modern 

listener. The proposed temporal elasticity model’s practical applications include but are not limited 

to the comparative performance analysis and computer simulation of expressive timing. To 

illustrate the relevant expressive tempo deviations, I performed a computer simulation of Hugo 

Riemann’s (1884) hierarchical phrasing scheme. This pattern was applied to the equitemporal 

MIDI files of different Max Reger’s organ works and compared against the recordings of 

professional organists, as well as Reger’s own recording. An evaluation of this model was made 

through the regression analysis and listening tests (REB #20-06-021). According to my knowledge, 

this is the first study to examine the phrasing in late Romantic organ music; quantitative research 

on expressive timing has thus far focused either on the piano and other instruments (Todd 1985; 

Palmer 1996; Repp 1998; Gabrielsson 2003) or the Baroque organ music (Jerkert 2004; Gingras 

et al. 2010). 
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Résumé 

L’expression musicale est souvent considérée comme un phénomène insaisissable 

nécessitant “une analyse complexe et mystérieuse” (Matravers 2001, 225). Cependant, plusieurs 

aspects de l’expression de la performance peuvent être étudiés à l’aide de méthodes modernes de 

calcul et de musicologie. En musique d’orgue, parce que l’organiste n’a qu’un contrôle limité sur 

les variations locales du timbre ou l’intensité des notes, le timing devient souvent le principal 

paramètre expressif par lequel l’interprète transmet la majeure partie de l’expressivité musicale de 

l’instrument. Ainsi, mon projet est dédié à l’investigation du timing comme l’outil le plus 

important pour créer une performance expressive. Le but principal de ma recherche est d’introduire 

un seul paramètre temporel, l’élasticité temporelle, l’utiliser pour décrire l’impact expressif 

quantitativement et trouver de telles valeurs de ce paramètre pour la musique d’orgue allemande 

tardive Romantique, qui serait, d’une part, stylistiquement approprié, et d’autre part, 

émotionnellement compréhensible pour l’auditeur moderne. Les applications pratiques du modèle 

d’élasticité temporelle proposé comprennent, sans toutefois s’y limiter, l’analyse comparative des 

performances et la simulation du timing expressif. Pour illustrer les écarts de tempo expressifs 

pertinents, j’ai réalisé une simulation du schéma hiérarchique d’Hugo Riemann (1884). Ce schéma 

a été appliqué aux fichiers MIDI équitemporals de différentes œuvres d’orgue de Max Reger et 

comparé aux enregistrements d’organistes professionnels, ainsi qu’à l’enregistrement de Reger lui-

même. L’analyse de régression et les tests d’écoute (REB #20-06-021) ont permis d’évaluer ce 

modèle. Selon mes connaissances, il s’agit de la première étude à examiner le phrasage dans la 

musique d’orgue Romantique tardive; jusqu’à présent, la recherche quantitative sur le timing 

expressif s’est concentrée soit sur le piano et d’autres instruments (Todd 1985; Palmer 1996; Repp 

1998; Gabrielsson 2003), soit sur la musique d’orgue Baroque (Jerkert 2004; Gingras et al. 2010). 
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I. Introduction 

The organ is one of the most impressive classical music instruments, with “the longest 

history of all, with a repertory larger than that of any other instrument and with a magnificence 

beyond any other musical invention from the Greeks to the present day” (Williams 1980, 14). 

However, during its centuries-long history, the organ has been perceived in a very controversial 

way. Some performers and composers were inspired by its sound capacities; for example, W. A. 

Mozart wrote that “the organ always was, both in my eyes and ears, the king of all instruments”  

(Mozart 1866, 67). In contrast, others described it as a mechanical, “essentially non-expressive 

instrument,” claiming that “it is wrong to play upon it in an emotional way” (Thalben-Ball 1950). 

The famous 20th-century composer Igor Stravinsky said: “I dislike the organ’s legato sostenuto, 

and its blur of octaves, as well as the fact that the monster never breathes” (Craft and Stravinsky 

1982, 46). The primary purpose of this work is to conduct interdisciplinary performance research 

based on both appropriate musicological methods and modern computational algorithms in order 

to reveal the expressive potential of the organ. 

While listening to a live organ performance or a recording, one is listening to music played 

by humans and that, therefore, contains a human expression. W. Goebl wrote that “without this 

expressivity, the music would not attract people; it is an integral part of the music” (Goebl et al. 

2008). In organ performance, the instrument’s constraints do not allow refined continuous control 

over note intensity or local timbre variations; the possibilities of dynamic manipulations are not 

universal and strongly depend on the instrument in use. In the case of Romantic music, 

articulation—another commonly used expression tool—is usually defined by the composer or set 

to legato, so it also cannot be changed significantly. However, the expressive timing always 

remains available to the performer, and that is why it becomes one the most attainable tools to 
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realize the organist’s expressive intent. My research, thus, is dedicated to the investigation of 

temporal elasticity as the most important tool to create an expressive performance.  

Quantitative research on expressive timing in music performance has so far primarily 

focused on the piano (Todd 1985; Palmer 1996; Repp 1992; Gabrielsson 2003), as well as some 

other instruments, such as the cello (Johnson 1999; Hong 2003), the guitar (Juslin 2000), the 

clarinet (Vines et al. 2006), the violin (Cheng and Chew 2009), and the harpsichord (Gingras et al. 

2016). The development of MIDI (Musical Digital Instrument Interface) has greatly contributed 

to expressive performance research as well (Windsor and Clarke 1997; Repp 1998; Friberg et al. 

2006; Cancino-Chacón et al. 2018). However, due to the nature of the instrument, the conclusions 

related to the piano or other instruments are not directly applicable to organ performances. 

Gabrielson and Juslin (1996) investigated expressive performance strategies for various 

instruments and showed that the variations in expressive timing were heavily dependent on the 

musical instrument and style. 

Although organ music is a significant part of Western musical tradition, only very few 

empirical studies on organ performance have been published so far (Nielsen 1999; Gingras et al. 

2015). However, they touched only the general problems in organ playing, such as practicing and 

performers’ errors. The expressive organ performance was investigated by Jerkert (2004) and 

Gingras (2008, 2010); these studies, nonetheless, were focused exclusively on Baroque organ 

music. As far as I know, no one has ever performed quantitative research on expressive timing in 

German late Romantic music, which is the main focus of the present work. I hope that my research 

will cover this knowledge gap, with its fundamental aim to create a quantitative expressive timing 

model specifically for the organ and, more precisely, for the German late Romantic style.1   

                                                
1 Results of this research were presented at COBS 2020 (Draginda 2020), ISMIR 2020 (Draginda and Fujinaga 
2020), and published in Per Musi Scholarly Music Journal (Draginda and Fujinaga 2021).  
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II. Literature overview 

Despite the fact discussed above that the expressive timing models for other instruments 

cannot be applied to the organ in their original form, it is highly insightful to investigate prior work 

with a view to make it a reference point for the new model created in this project. This Chapter 

gives a short overview of expressive timing models and provides an initial motivation to propose 

the Riemannian theoretical concepts as the model basis for German late Romantic organ music. 

 

II.1 Expressive timing models 

By definition, “models are attempts at codifying hypotheses about expressive performance 

in terms of mathematical formulas or computer programs so that they can be evaluated in 

systematic and quantitative ways” (Cancino-Chacón et al. 2018, 1). In general, four different 

approaches to modelling expressive timing could be distinguished (Widmer and Göbl 2004):  

o the synthesis-by-rule concept 

o the complex mathematical simulation 

o the data-driven approach relying on AI algorithms 

o the predictive modelling based on musical structure.  

Sundberg et al. (1983) first proposed the synthesis-by-rule concept, where the synthesized 

performance was created based on seven specific rules taken from the professional performance 

practice. These rules were later elaborated and transformed into the “analysis-by-synthesis,” 

putting the professional musicians and researchers in a permanent feedback loop to find the best 

rules’ parameters (Friberg et al. 2006). The Phrase Arch rule defined expressive timing in this 

ruleset: “a musical phrase is often performed with an arch-like shape applied to tempo and 

dynamics… The phrase is typically slow/soft in the beginning, fast/ loud in the middle and ends 
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slow/soft, modelling a crescendo/accelerando and decrescendo/rallentando pattern” (Friberg et al. 

2006, 149). Looking ahead, as it will be shown in the next Section II.2, this rule fully coincided 

with the Riemannian concept of joint expressive dynamic and phrasing (Riemann and Fuchs 1890, 

13). For the organ, nevertheless, this might be done solely by the variations in timing (Riemann 

1900, 912).   

The complex mathematical simulation of expressive performance was proposed in the 

ambitious “Mathematical Music Theory” by Guerino Mazzola (1990)—voluminous research 

incorporating music-theoretical, mathematical, philosophical, psychological and aesthetic areas of 

knowledge. Mazzola’s model consisted of two parts: an analytical part with several analysis tools 

assigning the specific weights to the notes, and a performance part, providing music generation 

based on the analysis made. This model was used by the RUBATO Composer System (Mazzola 

et al. 2008) to create an artificial expressive performance in different styles, but the expressive 

impact of this music has not been empirically evaluated. Mazzola’s idea of weighting has indirectly 

influenced this research project; however, instead of the note-by-note approach, the weighting of 

hierarchical levels was implemented for Romantic organ music (see Chapter III for details). 

The data-driven approach implied challenging the computer to look for specific patterns in 

the data extracted from the professional human performance. An extensive overview of expressive 

models based on AI algorithms was given in Cancino-Chacón et al. (2018). Usually, the modelling 

was done at the note level, predicting the expressive timing from the score features and/or 

previously learned rules. For the acceptable level of accuracy, this approach required a huge corpus 

of performance data, which would be barely possible to collect in the case of German late 

                                                
2 Original text: “Dynamik und Agogic wirken beim Klavier und den meisten übrigen Instrumenten zusammen: die 
Orgel ist auf Agogik allein angewiesen” (Riemann 1900, 91). 
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Romantic organ music because of the small number of available consistent professional 

recordings. However, this methodology might be promising later in the future if the recordings’ 

quantity significantly increases.  

The attention to the expressive potential of the musical structure was first directed by 

Shaffer (1980), who investigated the recordings of concert pianists and discovered the hierarchical 

organization of the expressive timing. Clarke (1982) confirmed that the expressive characteristics 

of musical performance were related to the piece’s structural characteristics and showed the 

correlation between rhythm and tempo. One of the earliest attempts to model the hierarchical 

structure of expressive timing computationally was made by Neil Todd (Todd 1985, 1989, 1992). 

He wrote: “a valid performance depends primarily on the perception and communication of the 

rhythmic life of the composition. That is, we must first discover the shape of the piece and then 

try to make it as clear as possible to our listeners.” (Todd 1985, 40). It is essential to notice here 

that Hugo Riemann had the same vision of the correct (or “valid”) performance (Riemann 1900, 

90).  

Todd’s models were based on “Generative Theory of Tonal Music”— the fundamental 

theoretical framework developed by Lerdahl and Jackendoff (1983), which in turn inherited the 

core musicological principles from Schenkerian analysis. Lerdahl and Jackendoff combined 

Schenker’s ideas with the laws of generative linguistics. They elaborated the following Reduction 

Hypothesis: “the listener attempts to organize all the events of a piece into a single coherent 

structure, such that they are heard in a hierarchy of relative importance” (Lerdahl and Jackendoff 

1983, 106). The Time Span Reduction, representing a particular case of Reduction Hypothesis, 

defined that the piece of music could be presented in terms of articulated melodic groups organized 

in a tree-like hierarchy starting from the smallest metric unit and moving through larger levels. 
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Such groups were determined by specific properties, making them coherent: the full or partial 

cadences or other melodic movements towards the tonal stability. The degree of stability was 

varied according to the hierarchic level of its group.  

Todd (1985, 1989) used the Time Span Reduction and modelled the tree-like hierarchy. He 

proposed a parabolic encoding function with six parameters to model the segments in the duration 

structure. He compared the model with the real performances and obtained visually similar curves 

for the human and algorithmic performances; however, he did not provide any quantitative 

evaluation data. 

In 1992, Todd improved his model, and instead of one simply connected tree, used a set 

(or a “forest”) of binary trees organized on several hierarchic levels (Todd 1992). In the same 

work, he introduced the strong connection between the timing and dynamics (“the faster, the 

louder, the slower, the softer”) and suggested that expressive tempo changes were governed by 

analogy to physical motion. The result was awe-inspiring: the regression of the algorithmic model 

against the real performance data for Chopin’s Prelude gave 𝑅" = 0.74, which was comparable 

for the values of the variance accounted for by a repeat human performance. Conic section curves, 

indeed, appeared to have a great potential in fitting tempo deviations for Romantic piano music. 

For example, Bruno Repp (1992) also found that local timing patterns followed a parabolic timing 

function in Schumann’s Träumerei. In the current study, another member of the conic sections’ 

family—elliptic curve—was proposed to model expressive timing in the German late Romantic 

music for organ (see Chapter III).    

Windsor and Clarke (1997) applied Todd’s model to the algorithmic analysis of Schubert’s 

G♭ major Impromptu op. 9. Even despite the relatively low correlation between algorithmic and 

the professional pianist performance (see Appendix 1), they showed that the model, in general, 
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was statistically significant. However, unlike Todd, they came to the fundamental conclusion that 

timing and dynamics were not connected by a definitive function (Windsor and Clarke 1997, 147). 

Interestingly, the same finding was confirmed by Repp (1999) by investigating the various piano 

performances of Chopin’s Etude op. 10 №3. Up to the present moment, the model in Windsor and 

Clarke (1997) came closest to the model proposed in the current paper, which is why it was chosen 

as a reference point for the analytical evaluation in Chapter III. 

The further advance in this field was the multi-level model (Widmer and Göbl 2004), which 

combined the predictive model (Windsor and Clarke 1997) with machine learning algorithms: the 

rule learning algorithm was used to learn a rule-based model of the local residual effects resulting 

after fitting parabolic approximation to a given tempo curve. An artificially expressive 

performance of Mozart’s op. 11/1, created in accordance with this model, won a Second Prize in 

a Computer Performance Rendering Contest in Tokyo in 2002, where computer interpretations of 

classical music were rated by listeners (Widmer and Göbl 2004, 210). The proposed ensemble of 

different models was, in my personal opinion, the most up-and-coming for this task and yielded a 

computational model of expressive timing comprising both the global hierarchical structure of the 

music and the local musical context. This idea of a hybrid approach was the inspiration for the 

Chapter VI of this project. 

In general, the hierarchical structure-based approach showed excellent potential for 

expressive timing modelling. However, it relied on Schenkerian harmonic analysis to define the 

phrasing boundaries, making it significantly less approachable for computational simulation, 

especially for the harmonically complex late Romantic music. Furthermore, the fundamental 

model (Todd 1992) contained a number of different parameters, which were hard to interpret and 

control. Consequently, it would be beneficial to create a similar model based on hierarchical music 
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structure, which would be independent of the harmonic analysis and would have a single, easy 

interpretable model parameter. That is how the temporal elasticity concept was born. 

 The model presented in this study is also based on music structure and, therefore, benefited 

from the conceptual advantages of the predictive structural approach. However, it has only one 

raw-number parameter (defined as temporal elasticity) and relies on the Riemannian phrasing 

theory, which does not require any knowledge of music harmony for building a hierarchical 

phrasing scheme. A more detailed account of Riemannian phrasing principles is given in the 

following Section. 

 

II.2 Riemannian phrasing theory and German late Romantic organ music 

Hugo Riemann (1849–1919) was one of the most influential music theorists of his time. 

Riemann’s ability to collect the contemporary trends of his time, abstract them into robust 

scientific theories and methodically describe them in his numerous books made his scholarship an 

appealing basis for mathematical modelling. “What is more, his systematic musical thought linked 

all the major aspects of the burgeoning discipline of musicology, from acoustics to aesthetics and 

history (and back again). For the first time, it seemed possible that musicology could indeed stand 

up to the objective, scientific scrutiny: Riemann helped define music as a stable, knowable entity 

– and, what is more, as an object worthy of scientific study” (Rehding 2003, 183).  

Riemann’s phrasing rules were described in his two fundamental studies (Riemann 1884, 

1903), as well as in other books and articles (Riemann 1900, 1912; Riemann and Fuchs 1890). The 

earliest work (Riemann 1884) was especially interesting because of its reference to the questions 

of performance practice, while the last major study (Riemann 1903) was primarily focused on the 

more formal analysis. For Riemann, the phrasing aimed to underline the clarity of the musical 
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structure and harmony (what he considered to be an essential part of the correct performance), 

contributed to the expression of “Life, Color, Warmth and Truth” (what was important for the 

touching, expressive performance); but the wrong phrasing might ruin the performance and make 

it grotesque.3  

In order to methodize the phrasing, Riemann introduced the following signs: 

1) Agogic accent (“Der agogische Akzent”) – the sign indicating the prolongation of the 

stressed note (and the shortening of the preceding note, respectively). In addition to the single 

accent (^), there were also double and triple accents denoting the greater degrees of prolongation. 

The agogic accent was vital for the German Romantic organ music, where it was barely possible 

to make an accentuation through the articulation (Laukvik 2006, 263). 

2) Reading mark (“Lesezeichen”) – the sign marking the boundaries of the small motives 

(Riemann 1884, 9). There was a single ( | ) and the double sign for the motives of different degree 

of importance ( || ); this sign was “meant to counter the natural tendency of musicians to group 

notes according to barlines—this tendency certainly being a relic of a Baroque performance 

practice” (Lohmann 1995, 261).  

3) Different groups of slurs. In his writings, Riemann replaced the legato slur with the 

phrasing slur because legato was the default articulation at that time;4 “the new office of the slur 

was to indicate the articulation of the musical thought (themes, periods, movements) into its natural 

divisions (phrases)” (Riemann and Fuchs 1890, 13). Riemann suggested that it would drastically 

                                                
3 Original text: “…die Phrasierung i) der Deutlichkeit dient, d.h. die Taktart, die motivische Gliederung und die 
Harmonie klarlegt, also ein unentbehrlicher Faktor des korrekten Vortrags ist; ferner, dass sie 2) dem Ausdruck erst 
Leben, Farbe, Wärme, Wahrheit gilt, sodass ein packender, ergreifender Vortrag ohne sie unmöglich ist. Endlich aber 
ist auch das Umgekehrte nicht außer Acht zu lassen, nämlich dass 3) falsche Agogik den Ausdruck ins Fratzenhafte 
verzerren, das Erhabene zum Lächerlichen machen muss (was kaum die falsche Dynamik in gleichem Maaßen 
vermag).” (Riemann 1900, 90). 
4 Original text: “legato ist die schlichte, die gewöhnliche Art der Tonverbindung, besonders für Töne, die zu einem 
Motive oder zu einer Phrase zusammen gehören.” (Riemann 1888, 8). 
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improve the quality of musical writing (Riemann 1884, 242).5 The slurs might be grouped in the 

following way (Sievers 1967, 509): 

- Connected slurs (“Bogenanschluß”): sign , indicating the immediate 

beginning of the following phrase after the end of the previous one; 

- Crossed slurs (“Bogenkreuzung”): sign , indicating that the 

following phrase should start before the end of the previous one; 

- Broken slurs (“Abbrechende Bogen”): sign , used when the first 

phrase did not reach its logical end; the second part after the break of the slur meant the so-called 

“ negative part” (or the end) of the following second phrase. 

- Stuttgart comma (“Stuttgarter Komma”): sign , prescribing the 

break in the middle of the phrase. 

- Double slurs (“Doppelbogen”): sign  , showing the outline 

of motives (bottom slurs) and long phrases (top slurs) at the same time. 

In order to define the rhythmical and metrical structure, Riemann introduced three basic 

terms (Riemann 1903, 7–13): 

1) Rhythmic quality (“Rhythmische Qualität”): the tempi between 60 MM and 120 MM 

were called “middle times” (“mittlere Zeiten”) and considered to be “normal”, whereas the tempi 

                                                
5 Original text: “Ich [Riemann] verband von Anfang an bei Abfassung dieses Buches den praktischen Zweck der 
Vorbereitung einer folgenschweren Verbesserung unserer Notenschrift, nämlich der Ersetzung der Legatobögen 
durch Phrasenbögen” (Riemann 1884, 242). 
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which were faster than 120 MM or slowly than 60 MM were brought into line with the “middle 

times” by summation or division respectively. 

2) Metric quality (“Metrische Qualität”) or different weights. According to Riemann, the 

music consisted of alternating the short light time (“Nebenzeit”) with long heavy time 

(“Hauptzeit”); the light time always came first (e.g., at the upbeat).  

3) Thematic motives (“Thematische Motiven”) – the parts of melody, usually consisting of 

two or three notes and representing the smallest possible musical units of stand-alone expressive 

importance (“eine kleinste Einheit von selbständiger Ausdrucksbedeutung,” Riemann 1903, VIII). 

According to Riemann, the motives formed larger groups6 in the symmetric hierarchical structure 

as shown in Figure 1 (in terms of tempo and with the down-beat start). 

 

                           Figure 1. Riemann’s hierarchical motivic scheme (Riemann 1884, 8). 

In his later work, Riemann (1903, 197) “locked” the metrical structure in the strict 8-bars 

period with the metric quality principles applied first to notes (short light – long heavy), then to 

bars (light first bar – heavy second bar), then, similarly, to the two-bars groups, and finally to the 

4-bars sentences (“Vordersatz” and “Nachsatz”). The most straightforward metric scheme for the 

8-bars period for the 2/4 time signature is shown in Figure 2.  

                                                
6 Original text: “zwei (oder drei) enger aneinander geschlossene Töne, denen zwei (oder drei) andere gegenübertreten, 
wodurch größere Gruppen entstehen, die einander ebenso entsprechen und mit der wachsenden Größe eine deutlichere 
Sonderung erfordern” (Riemann 1884, 8) 
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                       Figure 2. Metric scheme of the 8-bars period (Riemann 1903, 198). 

The following weights (or metric qualities) represented the hierarchical organization of the bars: 

- Degree 1 for the bars 1, 3, 5 and 7;  

- Degree 2 for the bars 2 and 6;  

- Degree 3 for the bar 4; and  

- Degree 4 for the bar 8. 

Strictly speaking, this system was not invented by Riemann; it was rather the “part of the 

standard themes in theoretical and critical writings on performance of this time” (Doğantan-Dack 

2012, 14). Morgan (1978) showed that the symmetrical scheme existed already in the second half 

of the XVIIIth century and was reported by Johann Kirnberger, who, however, did not describe the 

accents in the larger rhythmical units. The first hierarchical accentuation was introduced by 

Gottfried Weber in 1824: “There is also a higher symmetry. Just as beats together form small 

groups, several groups can also appear bound together as beats of a larger group, of a larger or 

higher rhythm, a rhythm of higher order. One can even go further and place such a rhythm of 

higher order with a similar one, or third, so that these two or three together form a yet higher 

rhythm… The grouping of the larger rhythm is a more broadly conceived symmetry, which is, 

incidentally, exactly like that of the measures, only on a larger scale” (Morgan 1978, 437). Thus, 

according to Weber, the larger formal units resulted from an accumulation of smaller units through 

a process of addition into larger groups. Weber’s assumptions were further developed by Moritz 

Hauptmann, who also conceived the meter as a symmetrical system and considered it beginning 
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accented, but also introduced the complementary “metrically negative” series, starting from the 

non-accented (light) time.   

In the most general case, the phrase for Riemann meant both changes in dynamics and 

timing: “all in all, the tone-force and rubato furnish the surest indication for determining the limits 

of slurs, so far as every phrase has but one climax, up to which it waxes in intensity, and after 

which to close it decreases, relaxing in tempo as well” (Riemann and Fuchs 1890, 13). Thus, it 

could be helpful for the composers to indicate the phrases not only by slurs but also by the 

crescendo and diminuendo signs.7 However, Riemann especially mentioned that for the organ, the 

phrasing might be done only by the variations in agogic (Riemann 1884, 8; Riemann 1900, 91). 

Any increase of motion indicated a start, whereas the prolongation (of a tone) was anticipated as a 

moment of relaxation. Thus, the perception of motivic structure within the large phrase trailed the 

agogic/dynamic intermediate peaks of the small individual motives, while the bounds between the 

motives corresponded to their respective agogic/dynamic minima.  

The concepts of symmetry and motivic development presented here built a fundamental 

methodological basis for my mathematical model of expressive timing. The appropriacy of the 

Riemannian concepts for the stylistically correct interpretation of the German late Romantic music 

was confirmed by many renowned organ performance researchers (Lohmann 1995; Laukvik 2006; 

Sander 2006; Szabó 2016). As it was shown in Lohmann (1995), Riemann’s phrasing rules to some 

extent may be used for the performance of F. Liszt’s BACH, more precisely, for the motivic 

shaping of the opening B-A-C-H motive. Laukvik (2006) also mentioned Liszt’s BACH and 

proposed the “waves-like” agogic shaping for the 16th-notes passages, as well as showed the 

                                                
7 Original text: “Da die übliche Bogenbezeichnung nicht auf Abgrenzung der Phrasen berechnet ist, so helfen sich die 
Komponisten, um die weitere Ausdehnung der Phrasen anzudeuten, entweder durch die längeren Schattirungszeichen 
oder durch die Wortvorschriften crescendo und diminuendo” (Riemann 1884, 257). 
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possibility of the Riemannian dynamic/agogic shaping in organ Choral Preludes by J. Brahms and 

1st Organ Sonata by F. Mendelssohn. But, of course, most of the performance research on 

Riemann’s principles was focused on the organ music of Max Reger. 

Max Reger (1873–1916) has learned the Riemann’s phrasing and metric rules already 

during his first piano lessons with Adalbert Lindner—the respective markings were found in his 

instructional piano scores starting from 1884 (Sievers 1967, 556). That is why I found the earlier 

motivic idea (Riemann 1884) to be more relevant to Reger’s music than the later dogmatic metric 

scheme (Riemann 1903). This observation was later confirmed during my conversation with Dr. 

Jürgen Schaarwächter and Dr. Stefan König at the Max Reger Institute in Karlsruhe (Germany) in 

July 2019. From 1890 Riemann became Reger’s primary composition and theory teacher, first at 

the Conservatory in Sondershausen, and later in Wiesbaden, where he became a “member” of an 

“international phrasing office” (“Mitglied in einem ganz internationalen Phrasierungsbureau”) 

(König 2020, 5).  

The influence of Riemann’s phrasing on Reger’s earliest works was quite evident. The 

performance-level markings made bei red ink (“Vortragsebene,” for example, see Figure 3) in his 

compositions written in the 1890s contained different Riemann’s phrasing signs (König 2020, 8). 

According to König, Reger’s most favourite phrasings signs were the crossed slurs, the upbeat 

slurs and particularly the agogic accent, which he found helpful for the “fast understanding” 

(König 2020, 9).8 For example, the agogic accent was present in opp. 1–3, 6, and 14; the crossing 

slurs were used in opp. 3, 9, 48, and 49. Some other signs, such as crossed slurs or double slurs, 

were present in his homework transcriptions made under the direct supervision of Riemann 

(Sievers 1967, 539). The most well-known Reger’s organ piece containing Riemann’s indications 

                                                
8 Original text: “Ich [Reger] hätte dieses Zeichen ^ sehr gerne, da es sehr, sehr viel zum schnellen Verständnis nützt” 
(König 2020, 9). 
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was the Choral prelude “Komm, süßer Tod” WoO IV/3, where Riemannian upbeat slur and agogic 

accent appeared already in the first bar (see Figure 3): 

 

                          Figure 3. Choral prelude “Komm, süßer Tod!” WoO IV/3 (Reger 1894).               

The small star sign (*) near the agogic accent was leading to the footnote, where Reger 

clearly explained its meaning, as well as the implication of his crescendo and diminuendo signs: 

“The sign ^ denotes a slight lingering on the note or rest, over which it is placed;  and 

 have dynamic (Swell) and agogic meaning” (Reger 1894). Moreover, Reger repeated 

literally the same explanation in the comment to his Choral Fantasia “Freu dich sehr, o meine 

Seele” op. 30 (Reger 1899).9 It was especially important for the interpretation of the phrases when 

the usage of expression box was for some (e.g., technical) reasons not possible—then the effect of 

increasing and decreasing of the motion might be done only agogically, in full accordance with 

the previously cited Riemannian point of view. 

Sievers (1967, 551) also pointed out that the clear Riemannian 8-bars periodic structure 

could be found in many of Reger’s works, for example, in the Organ Sonata №1 op. 33 (in the 

                                                
9 Original text: “Die   beziehen sich auf den Gebrauch des Jalousieschwellers; doch kann man 
auch im Tempo bei  etwas string. u. bei  etwas ritard. (Tempo rubato)”  (Reger 1898). 
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third part), Organ Suite op. 16 (fourth part), Organ Trio №4 op. 47, Choral Preludes op. 135a, as 

well as in some “Marienlieder” op. 61.  

After 1900 the professional relationships between Reger and Riemann went cold. Reger 

tried to distance himself from his teacher and denounced Riemann’s theory to be too conservative, 

tight, dogmatic, and useless for the good musician (Sievers 1967, 589; König 2020, 13). Some of 

the Riemann’s phrasing signs (such as agogic accent or crossed slurs) Reger had never used in his 

later works (Sievers 1967, 540); other signs (such as slurring in general) were modified compared 

to the Riemann’s initial meaning (König 2020, 12).  

However, several performance researchers showed that some aspects of Riemann’s 

theories, especially those being the common trends of the time, still had an influence on the mature 

Reger’s works. For example, Lohmann wrote: “The traces of Riemann’s thinking may easily be 

detected in Reger’s works, even in those written after 1907, although these ideas, of course, are to 

a great extent a reflection of trends current at the time” (Lohmann 1995, 278). Lohmann, Laukvik 

and Sander clearly considered the Riemannian phrase shaping to be fully relevant for Reger’s 

organ music and provided examples from opp. 40 and 135b (Laukvik 2006, 270–271), opp. 52/2, 

59/9, and 60 (Lohmann 1995, 281–282), op. 73 (Sander 2006, 93). Sander (2006) outlined the 

influence of Riemann’s teaching to the Reger’s phrasing, also affirming the agogic/dynamic 

concept and describing the Riemannian hierarchical organization of the large phrases: “The large 

phrases are built from the short motives; furthermore, its movement is like waves: the culmination 

point of each following motive is stronger than the previous” (Sander 2006, 11). The importance 

of the Riemann’s phrasing scholarship in Reger’s work also emphasized Balázs Szabó, who 

especially mentioned in this context the ability of the Riemannian phrasing to visualize the motivic 

structure of the piece (Szabó 2016, 57).  
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With regard to his time, Riemann’s aim was “to give a kind of system of coordinates; he 

did not want (but was often misunderstood as wanting!) to dictate rules to composers and 

performers” (Lohmann 1995, 264). After the presented study of the respective literature, this 

“system of coordinates” was chosen as the methodological foundation for the mathematical 

modelling of expressive timing in German late Romantic organ music.  

 

III. Temporal elasticity model and its analytical evaluation 

The Riemannian hierarchical phrasing scheme (see Figure 1) was the starting point for my 

mathematical model. I simulated the tempo arch at each level as the positive semi-ellipse, where 

the long axe was defined by Riemannian motivic length, and the short axe was proportional to the 

metronomic tempo. The equation for Riemann’s phrasing arcs on each level took then the 

following form:  

																																					𝑦*+ = ,-1 − 0𝑥 − 234
534
6
"
7 ∗ 𝑏*+ + 𝑇,																																																						(1)                                                        

where i denotes the number of the level; j, the sequence number of the semi-ellipse on the ith level; 

aij, the long axe of the semi-ellipse, corresponding to the Riemannian motivic length; hij, x-

coordinate of the semi-ellipse’s center, corresponding to the middle point of each motive; T, 

starting metronomic tempo value (constant); bij, the short axe of the semi-ellipse, proportional to 

T: 

																																																											𝑏*+ = 	 𝑒*+ ∗ 	𝑇																																																																									(2)                                   

The parameter e is defined as temporal elasticity: it shows the maximum of the model tempo 

deviation against the metronomic tempo for each level. If 𝑒 = 𝑒A is the temporal elasticity for the 

global arch over the whole piece (𝑎*+ = 𝑎A = 0.5 ∗ (𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑖𝑒𝑐𝑒)), then, in the 
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symmetric case, temporal elasticities on subsequent levels are related to the e0 through the same 

weight coefficient 1.5: 

																																																								𝑒*+ = 𝑒* = 	1.5 ∗ 𝑒A 𝑁*	,⁄ 																																																							(3)	                                              

where Ni is an overall quantity of semi-ellipses on the ith level. However, in real performance 

practice, absolute symmetry is rarely kept, and some irregularities may be possible. In the more 

general case, temporal elasticities take values: 

																																																																			𝑒*+ = 𝑘*+ ∗ 𝑒A 𝑁*,⁄ 																																																									(4)                             

where the weights coefficients kij may differ both within the specific level and over all levels.   

 According to my research hypothesis, temporal elasticity e0, a single raw-number model 

parameter, can carry the expressive information in organ performance in the German late Romantic 

style. This hypothesis was rooted in several psychological studies showing that the listeners were 

able to perceive some musical expression resulting from the performer’s structural interpretation 

of the piece (Palmer 1996; Gabrielsson 2003). Because my mathematical model for the 

Riemannian phrasing scheme was based on the structural hierarchy, I suggested that the difference 

in values of the model’s parameter, temporal elasticity, might result in a difference in the 

expressive impact. If the hypothesis is true, the goal of this research becomes determining such 

parameter values for e0 that, on the one hand, would preserve the Riemannian idea of the built-in 

motivic symmetry, and on the other hand, would approximate the real performance data and 

therefore might be used in computer simulation of expressive timing.  

 

III.1 Model for the duple meter 

The model was evaluated analytically on Max Reger’s Choral Prelude op. 135a/1. It is a 

textbook example of the Riemannian scheme with the time signature of 4/4 (Figure 1b): eight bars 
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long, clear cadences in bars 2, 4, 6, 8 (see Appendix 2). The performance data was collected as the 

MIDI recording of the professional organist interpretation at the Casavant organ at The Church of 

Saint Andrew and Saint Paul in Montreal (Canada). Temporal information was extracted through 

the manual beat-mapping process in Logic Pro X and exported to Matlab for further processing. 

The local tempo at the 16th-note level was calculated with Matlab as: 

																																									𝑇(R) = 60 ∗ TUVWXY(VZ[)\TUVWXY(V)
]UVWXY(VZ[)\]UVWXY(V)

	,																																																									(5)                  

where bonset and tonset are the onset time of note n in the score (in beats) and in the recording (in 

seconds), respectively. If there was no event at the 16th-note level, the local tempo value was 

linearly interpolated. The model tempo curve Y involving the global arch and 4 subsequent levels 

was created in Matlab as: 

																																								𝑌 = 𝑌A +__,-1 − `𝑥 −
ℎ*+
𝑎*+
a
"

7 ∗ 𝑒*+ ∗ 𝑇
b3

+cd

e

*cd

																																											(6) 

with the following global set-up: starting tempo of the performance data T=21 bpm; total number 

of sixteenth notes in the piece S16=128; total number of note onsets nchuncks=S16+1=129; Y0, global 

arch obtained from the equation (1) with center h0 = S16 /2 = 64 and long axe a0 = S16 /2 = 64. For 

the subsequent levels, the quantities of ellipses Ni on the ith level are N1=2, N2=4, N3=8, N4=16. 

The center of the jth semi-ellipse on the ith level is defined as hij = mk * h0 / Ni , where mk =(2*k+1), 

k ∈ ℤ,  0 £  k £ Ni -1, and aij = h0 / Ni denotes the long axe of the jth semi-ellipse on the ith level.  

 

III.1.1 Symmetric model and optimization procedure 

An example symmetrical model curve (normalized to the mean tempo value of human 

performance data) with temporal elasticity values 𝑒A = 0.5	and 𝑒*+ = 	1.5 ∗ 𝑒A 𝑁*⁄  is shown in 

Figure 4.  
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Figure 4. Mathematical model of Riemann’s motivic scheme (Choral Prelude op. 135a/1). 

Level 1 of this model corresponds here the cadences in bars 4 and 8; level 2 shows the cadences 

in bars 2, 4, 6 and 8; level 3 highlights the four quarter-note segments endings, and level 4 

corresponds to the smallest microstructure of two quarter-note motives.  

The straightforward regression of this symmetric model (3) against the human performance 

data gave 𝑅" = 0.46, 𝑝 < 0.0001. It can be compared it with the results in Windsor and Clarke 

(1997), where the highest R2 obtained for timing from the similar symmetric model was 𝑅" =

0.299, 𝑝 < 0.0001 (see Appendix 1). However, this comparison is only notional, because the 

model in Windsor and Clarke (1997), despite the similar structure, has a different methodological 

background, as well as was applied to the early Romantic piano piece.  

Then the Matlab built-in Nelder-Mead simplex algorithm (Lagarias et al. 1998) was used 

to evaluate the generic model with the varying values of eij. Temporal elasticities at the levels 1–4 

were represented from (4) as 𝑒*+ = 𝑘*+ ∗ 𝑒A 𝑁*⁄ , and the coefficients kij together with the global 
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value e0 were set as parameters to optimize for the Matlab fminsearch function so to minimize 

the distance between the model curve Y and the performance data. The values 𝑒A = 0.5 and 

symmetrical coefficients 𝑘*+ = 1.5, were used as initial guess for the first simplex. The obtained 

curve (Figure 5) provided a highly significant coefficient of determination 𝑅" = 0.83, 𝑝 < 0.0001 

which might be comparable with the results in Todd (1992). The correlation between the optimized 

curve and human performance 𝑅 = 0.91	is even higher, than the correlation between two 

professional organists’ interpretation of this piece (𝑅 = 0.89, see Chapter V). 

 

                      Figure 5. Model curve with optimized parameters obtained by Nelder-Mead simplex 
algorithm (duple-meter model). 

But despite the high value of R2, the weights obtained through the optimization process cannot be 

directly used for the model simulation because they contain information about both relevant 

(performer’s expressive intent) and irrelevant (e.g., related to the technical issues) tempo 

deviations. I undertook a detailed analysis of the weights’ distribution so to determine the most 

prominent trends and map them to the relevant score features or historic performance practice 

principles. 
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The optimized temporal elasticity was close to the initial guess: 𝑒A = 0.53, and the 

coefficients kij were distributed in the range from 3.6*10-8 to 4.97 with the mean over all levels 

𝑚𝑒𝑎𝑛(𝑘*+) = 1.64, which correlates well with the initial value for symmetric model 𝑚𝑒𝑎𝑛l𝑘*+m =

𝑘*+ = 1.50 (see Figure 6). 

 

                      Figure 6. Optimized coefficients kij at the levels 1–4. Colored dashed lines represent the mean 
values for each level. 

This obtained result contains three important factors to consider:  

1) The levels 2 and 4 are more elastic than the levels 1 and 3. This coincides well with the 

“motivic paradigm” of the Riemannian model, with the small motives being its cornerstone, as 

well as to the brief score analysis of the piece showing that the cadences in bars 2, 4, 6 and 8 are 

marked by the respective phrasing slur endings (see Appendix 2). 

2) The first coefficient at the level 2 𝑘"d = 3.34,	(see Figure 6, bar 1) is higher than the 

level mean value 𝑚𝑒𝑎𝑛(𝑘*+) = 2.7. It is possible to notice that the first ‘hump’ of the optimized 

curve is higher than the ‘hump’ for the symmetric model (see Figures 4 and 5). It might be a result 
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of the initial performer’s attempt to grab the audience’s attention right at the beginning of the piece 

by substantial tempo increase. 

3) Neither the symmetric nor the generic model curve did not reach the maximal (fastest) 

tempo of human performance. That is understandable because with the further increase in temporal 

elasticity, the “tails” of the model curve at the beginning and at the end cross the zero-level and 

thus output the sense-less negative tempo values. Hence, introducing appropriate boundary 

conditions for a start- and end- tempo might improve the model performance and make it more 

elastic. 

 

III.1.2 Improved model 

Three aforementioned factors from the generic model analysis were used to create the 

appropriate modifications and improve the original dogmatic symmetric model.  

Modification 1: The levels 2 and 4 were set to have more weight than the levels 1 and 3. The 

respective values of kij are shown in the Table 1. The mean value for the improved model was 

deliberately kept the same as for the initial symmetric model: 	𝑚𝑒𝑎𝑛(𝑘*+)noppq]r*s =

	𝑚𝑒𝑎𝑛(𝑘*+)*ptruvqw = 1.50. 

Table 1. Coefficients kij for the improved symmetric model (duple meter). 

Levels kij, average value (best fit model curve) kij, improved model  

1 0.54 0.5 

2 2.7 2.5 

3 0.71 0.5 

4 2.43 2.5 
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Modification 2: The first coefficient at the second level was increased up to 𝑘"d = 3.5	(so to give 

the same elasticity as for the next four bars) for emulation of performer’s expression at the 

beginning of the piece. Figure 7 shows the improved model curve with two modifications. 

 

                      Figure 7. Improved model with one and two modifications (duple meter). 

Modification 3: The model tempo curve was defined to be above or equal to the performance 

tempo minimum value (final ritardando) to prevent it from getting negative values while 

increasing the temporal elasticity. The improved model with different elasticity values is shown in 

Figure 8. 

 

            Figure 8. Improved model with three modifications (duple meter). 
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Henceforth, in the improved model, only the global arch elasticity e0 can vary and thus 

encompass the variations in expressive timing. The other elasticity coefficients eij are fixed by 

being tied to the respective level values of kij (4), and therefore ensure the Riemannian symmetry. 

The improved model was evaluated mathematically with the same algorithm as described in 

previous Section III.1.1, but this time only the value of e0 was optimized. The summary of 

regression analysis depending on the modifications made is presented in the Table 2:  

Table 2. Summary of regression analysis for improved symmetric model (duple meter).  

All coefficients R2 are significant with p<0.0001. 

 

 

It is revealed, that the improved model has a better performance, than the ‘pure’ symmetrical 

model. Specifically, introducing the levels’ inequality and elasticity increase at the second level 

made a significant difference. It is a meaningful finding for the performance practice illustrating 

how essential are the first bars of the piece (“well begun is half done”). The boundary conditions 

allow the model to increase the R2 as well; however, it is interesting to see, that when the elastic 

extension of the model curve becomes too high, the R2 slowly decreases (see Figure 9). It shows, 

that after the certain values of e0 the timing becomes over-expressive (described in performer’s 

jargon as “too much”) and might sound unconvincing for the listener. 

Number of modifications Optimal value of e0 R2 

No modifications (‘pure’ symmetric) 0.53 0.46 

One (only unequal levels) 0.56 0.5 

Two (unequal levels and k21 increase) 0.56 0.61 

Three (unequal levels, k21 increase and boundary 

conditions) 

0.62 0.66 
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                      Figure 9. Coefficient of determination for improved duple-meter model depending on e0. 

This is an important avenue towards the computer simulation of expressive timing: the values of 

temporal elasticity within the interval with the highest values of R2 might be musically the most 

convincing expressive strategies for the performer. The less elastic phrasing might be considered 

as mechanical, or non-expressive, while the hyper-elastic phrasing is tasteless or grotesque. 

 

III.2 Model for the triple meter 

A similar model was built for the triple-meter (Figure 1a) and analytically evaluated on 

Max Reger’s op. 73 (bars 133–138, starting from the upbeat; see in Appendix 2). As can be seen 

from Figure 1, the triple-meter pieces have the same built-in symmetry as the duple-meter ones, 

where the number of semi-ellipses doubles while moving down from level 1. The main difference 

is in the number of semi-ellipses on the lowest, “motivic” level: whereas in the duple-meter case, 

it consists of two semi-ellipses and two-notes motives, in the triple-meter case, it has three semi-

ellipses and three-notes motives. 

In order to get the simulated symmetric phrasing for the selected excerpt, three “blocks” 

from Figure 1b were stuck together under the main arch with e0. The model curve was obtained 
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from Equation (6) with the respective numbers of ellipses N1=3, N1=6, N1=12 and N1=24, as well 

as with the following global parameters: nchuncks=216, h0 =108, and a0 = 108. Human performance 

data was collected in the same way as for the duple-meter model. The regression of the symmetric 

model with fixed elasticity values against the human performance data gave an 𝑅" = 0.42, 𝑝 <

0.0001. Then the same optimization procedure was performed as described in previous Section 

III.1.1. Figure 10 shows the model curve after optimization. 

 

Figure 10. Model curve with optimized parameters obtained by Nelder-Mead simplex algorithm. 

The optimized curve gave an 𝑅" = 0.79, 𝑝 < 0.0001, demonstrating a relatively high fitting 

potential of the model. The value of optimal temporal elasticity was 𝑒A = 1.05, and the coefficients 

k were distributed in the range from 2.4*10-4 to 7.26 with the mean over all levels 𝑚𝑒𝑎𝑛(𝑘*+) =

1.68, which, again, is not far from the initial value for symmetric model 𝑚𝑒𝑎𝑛l𝑘*+m = 𝑘*+ = 1.5 

(see Figure 11). The factors proposed in the previous Section for improved duple-meter model 

were valid for the triple model as well, but, in this case, with the different levels’ strength. The 

“motivic” level 4 was the strongest, as for the duple-meter model; level 1, corresponding to the 

quasi-cadences in bars 134 and 136, and level 3, corresponding to the four short subsections in 

0 20 40 60 80 100 120 140 160 180 200
Time, chunks

(one chunk is equal to the triplet 32d note note length)

20

30

40

50

60

70

80

90

Te
m

po
, b

pm

Human performance data
Model (best possible fit)



 

 28 

bars 134 and 135, marked by four slurs, were also relatively strong. It seems that the number of 

slurs plays an important role in the definition of the level’s strength; this hypothesis will be further 

discussed in Chapter VI.  

 

Figure 11. Optimized coefficients kij at the levels 1–4 (triple-meter model). Dashed lines represent the 
mean values for each level. 

The improved model was created analogously to the duple-meter procedure, with unequal 

levels based on the values of kij presented in Table 3, as well as with increasing of the first 

coefficient on the second level and introducing of the boundary conditions. 
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The introduction of the respective modifications led to the increasing of the coefficient of 

determination for the improved model up to 𝑅" = 0.56, 𝑝 < 0.0001. Figure 12 shows the 

improved model with different values of temporal elasticity for the triple meter. 

 

           Figure 12. Improved model (triple meter). 

As in the case of the duple-meter model, the coefficient of determination was slightly decreasing 

in the areas of low or high elasticities (see Figure 13). However, for the triple-meter model, this 

effect was not really prominent.  

 

Figure 13. Coefficient of determination for improved triple-meter model depending on e0. 
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In this Chapter, the Riemannian phrasing model was built and analyzed analytically. It was 

shown that the modifications based on the simple music score analysis allowed to improve the 

model’s fitting capacity. Furthermore, the coefficient of determination of the improved model was 

proven to depend on the temporal elasticity, with the maximum values falling approximately into 

the elasticity interval [0.8, 1.2] (see Figure 9 and Figure 13). This interval is suggested to be the 

“safest” strategy for a performer, where the phrasing is expressive enough but is not “too much” 

or grotesque. The Chapter that follows moves on to consider the empirical evaluation of the 

proposed model through the listening tests. 

 

IV. Evaluation of the temporal elasticity model through the listening tests 

The listening experiment (REB file #20-06-021) was designed to empirically evaluate the 

proposed model by investigating the possible correlation between temporal elasticity values and 

listeners’ perception of performance expression. The conducted experiment had two parts: the 

first part was introductory and intended to evaluate the overall model’s naturalness; the second 

(main) part was entirely focused on evaluating the perceived expression. 

 

IV.1 Methodology 

Twenty-nine people identifying themselves as “organ students, working professionals, 

organ amateurs or enthusiasts” (referred further as “Organists”), and twenty-four persons with 

“little or no experience with organ or its repertoire” (referred further as “Non-Organists”) 

voluntarily participated in the anonymous online survey. All participants gave their informed 

consent prior to the beginning of the experiment. The stimuli were different versions of Max 

Reger’s pieces described in the previous Chapter III: Choral Prelude op. 135a/1 (duple-meter 
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model) and the short excerpt from the op. 73 (bars 133–138, triple-meter model). One of the 

versions for each piece was a professional organ recording, and the other versions were MIDI 

files, which were modified to have the tempo curves simulated according to the mathematical 

model.  

In order to achieve the experiment’s purity, the following methodology was elaborated. 

First, the professional organ performance of the pieces was recorded in both MIDI and audio 

formats in The Church of Saint Andrew and Saint Paul in Montreal at the Casavant organ, 

equipped with the Solid State MIDI control system. The MIDI recordings were made using the 

OrganAssist software sequencer (OrganAssist 2021), which enabled to properly save all 

information about organ registrations and the swell boxes positions in SysEx messages. Then, the 

recorded MIDI files were imported into LogiPro X and accurately beat-mapped so to match the 

original score (this process was identical to the workflow described in Chapter III and used to 

extract the temporal information from the files). Next, the tempo curve was “flattened,” and the 

file tempo was set to the constant (metronomic) value. At the last step, the tempo values obtained 

from the Matlab model (6) were programmatically applied to these “flat” MIDI files using the 

high-level C#/.NET framework DryWetMidi (2020). In each part of the experiment, the MIDI 

files were modelled with different values of temporal elasticity. All MIDI files were then played 

back at the same instrument with the same registration as the original human performance and 

professionally recorded from the listener’s position so to capture the acoustics of the church. This 

approach allowed to eliminate any possible performance discrepancies in the files except the 

variations in timing. 

The experiment’s web interface was designed with the Web Audio Evaluation Tool 

(Jillings et al. 2015) and included the task description, volume control, audio files and play 
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buttons. Before the experiment start, listeners were given the opportunity to check and adjust the 

sound level. 

Part 1: In the first part, the stimuli were the human recordings and two models, symmetric 

and improved. The models were created with the closest to the human recording temporal 

elasticity values as discussed in the previous Chapter III (𝑒A = 0.6 and 𝑒A = 1.0	for op. 135a/1 

and op. 73, respectively). The exact task for the listeners was: “Please, select the preferred 

interpretation by clicking on its letter (A, B or C).” There was a designated page for each of two 

pieces, and the stimuli on the page were shown in the randomized order. The listeners were 

required to listen to all the music excerpts in their entirety and then select only one variant they 

liked the most. 

Part 2: In the second part, the stimuli were the human recordings (the same as in Part 1), 

as well as the improved symmetric models with temporal elasticity values 𝑒A = 0.4, 𝑒A = 0.8, 

𝑒A = 1.2 and 𝑒A = 1.6	(see Figures 8 and 12). The exact question to the listeners was: “Despite 

the type of emotions felt, please evaluate how expressive each performance is at the scale 1-100 

(by moving the slider).” The sliders were provided in the web interface for the response of each 

stimulus.  

It is important to notice that this question was intentionally chosen in accordance with the 

results described by Bhatara et al. (2011), where a similar methodology was used for another 

experiment. In particular, Bhatara (2008) showed that the additional remark for the participants 

that it did not matter which particular emotion they felt while listening was proven to be important 

for the experimental results. The following ticks’ descriptions were attached to the sliders so to 

help the participants: “Not expressive, mechanical” (at position 20), “Moderately expressive” (at 

position 50) and “Extremely emotional” (at position 80). The introducing of the word “emotional” 
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at the last tick was also done intentionally: Bhatara (2008) showed that the replacement of the 

word “expressive” to the equivalent word “emotional” in the experiment question facilitated the 

decision-making process for the participants and led to the improvement in the experimental 

results. The advantage of these essential methodological aspects was taken into account in my 

experiment.  

Just like in the first part, the listeners were required to listen to the excerpts in their 

entirety: this time, on each of the two pages, there were five different versions shown in random 

order. The listeners were obligated to use the full range of the slider’s scale and were allowed to 

listen to each version as many times as they needed so to make their final decision. After the 

experiment’s closure, all participants’ ratings were first divided by 100 and then imported to the 

IBM SPSS platform for detailed statistical analysis.  

 

IV.2 Experimental results 

Part 1. In the first part, the human performance was the most selected (preferred) version 

for op. 135a/1 and op.73 (referred further as “135H” and “73H”, respectively), followed by the 

improved symmetric model (“135M” and “73M”); the least preferred became the symmetric 

model (“135SM” and “73SM”). Out of all 53 participants, 25, 18, and 10 people selected the 

135H, 135M, and 135SM versions, respectively; 23, 21, and 9 participants have chosen the 

respective versions 73H, 73M, and 73SM. The Chi-square goodness-of-fit statistical test 

revealed that the test answers distributions (25, 18, 10) and (23, 21, 9) were significantly different 

from the chance level10: 𝜒"	(2, 𝑁 = 53) = 6.38, 𝑝 < 0.05	for op.135a/1 and 𝜒"	(2, 𝑁 = 53) =

6.49, 𝑝 < 0.05 for op. 73. 

                                                
10 The chance-level null hypothesis assumes the values for each fragment are equal: 53/3, 53/3, 53/3. 
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The confidence intervals comparison method was chosen to analyze the individual 

differences between the versions of each piece. Each response in favor of the selected version 

was assigned the value 1, then the mean, the mean standard error, and the confidence intervals 

were calculated in SPSS. Table 4 shows the results’ outcome. It is possible to notice that some 

confidence intervals on the 95% level fall into the category of barely non-overlapping intervals 

(Goldstein and Healy 1995). In this case, Afshartous and Preston (2010) proposed using an 

83% confidence interval of the mean for each group, which reduced the type II error rate. 

Consequently, this approach was applied to the analysis of Part 1 experimental results.  

The mean values and their respective confidence intervals are presented in Figure 14a 

(op. 135a/1) and Figure 14b (op.73). From the figure above, we can see that the human 

performance did not significantly differ from the improved model, which indirectly indicated the 

high naturalness of this model. However, the symmetric model got a significantly lower listeners’ 

preference: its confidence interval did not overlap with the human performance and in the case 

of op. 73, neither with the human performance nor with the improved model. 

Table 4. Experimental results for Part 1 (all participants). 

Version N Mean SEM CI-95%, Low CI-95%, High CI-83%, Low CI-83%, High 

135H 53 0.47 0.069 0.33 0.61 0.38 0.57 

135M 53 0.34 0.066 0.21 0.47 0.25 0.43 

135SM 53 0.19 0.054 0.08 0.30 0.11 0.26 

73H 53 0.43 0.069 0.30 0.57 0.34 0.53 

73M 53 0.40 0.068 0.26 0.53 0.30 0.49 

73SM 53 0.17 0.052 0.07 0.27 0.1 0.24 



 

 35 

This could serve as as empirical confirmation for the appropriacy of the factors theoretically 

predicted to improve the original symmetric model (see Chapter III). 

Further analysis was performed to reveal the possible difference between the Organists’ 

and Non-Organists’ perceptions of the model (see full result tables in Appendix 3). Figures 15 

and 16 provide an overview of the experimental results for both groups. 

 

 

 

 

 

 

 

 

Figure 15. Results of the listening experiment, part 1 (Organists group). a) - op. 135a/1, b) - op. 73. 
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Figure 14. Results of the listening experiment, part 1 (all participants). a) - op. 135a/1, b) - op. 73. 
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In general, both groups showed a similar trend in their preferences, favoring human performance 

and discarding the symmetric model. For the Non-Organists group, the mean rating for the 

improved model was even higher than the mean rating for human performance (0.46 and 0.42, 

respectively). However, this difference was not statistically significant because the confidence 

intervals vastly overlap.   

Part 2. The following abbreviations were used for the stimuli in this part: human 

performance of op. 135a/1 and op. 73 was referred to as “135H”, and “73H” (same as in Part 1), 

the improved models with the temporal elasticities 𝑒A = 0.4, 𝑒A = 0.8, 𝑒A = 1.2 and 𝑒A = 1.6 

were referred to as “135M0.4”, “135M0.8”, “135M1.2”, “135M1.6” for op 135a/1 and 

“73M0.4”, “73M0.8”, “73M1.2”, “73M1.6” for op. 73.  

The grand mean of listeners’ ratings was 𝑀 = 0.54	(𝑆𝐸 = 0.05) for all stimuli of op. 

135a/1 and 𝑀 = 0.6	(𝑆𝐸 = 0.05) for op.73, which demonstrated that responses were relatively 

well centered around the scale. Individual means (participants wise) ranged from 0.37 to 0.68 

(SD=0.1) for op 135a/1 and from 0.47 to 0.76 (SD=0.1) for op. 73.  
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Figure 16. Results of the listening experiment, part 1 (Non-Organists group). a) - op. 135a/1, b) - op. 73 
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A repeated measures one-way ANOVA determined that the effect of temporal elasticity 

level in the four simulated performances on the listeners’ expressivity ratings was significant for 

both op. 135a/1 (𝐹(3, 156) = 23.96, 𝑝 < 0.05) and op. 73 (𝐹(2.5, 132.6) = 25.9, 𝑝 < 0.05). 11 

The effect size was large for both pieces: 𝜂t" = 0.31	and 𝜂t" = 0.33 (for op.135a/1 and op.73, 

respectively). In general, the model version with the highest value of temporal elasticity 𝑒A = 1.6 

was rated as the most expressive, and the model with the least value 𝑒A = 0.4 (for op. 135a/1) or 

second-least value 𝑒A = 0.8 (op. 73) had the lowest rating.  

The linear regression of the mean ratings for the model elasticity values was significant 

(𝑅" = 0.97, 𝑝 = 0.013) for op. 135a/1. For op. 73, only mean ratings in the elasticity range from 

𝑒A = 0.8 to 𝑒A = 1.6 showed a significant linear trend (𝑅" = 0.99, 𝑝 = 0.03). Figures 17 and 18 

show the mean listeners’ ratings for the simulated performances, human performances and the 

significant linear trends. 

 

                        Figure 17. Average listeners’ ratings for models with different values of temporal 
elasticity and human performance (op.135a/1). 

                                                
11 In this case, Mauchly’s sphericity test was significant (χ2 (5) = 14.7, p = 0.012); that is why the Greenhouse-Geisser 
correction was used. 
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                          Figure 18. Average listeners’ ratings for models with different values of temporal 
elasticity and human performance (op. 73). 

In order to explore the difference between the ratings for individual models, as well as 

the rating for the human performance, the pairwise comparison with the Turkey HSD (“Honestly 

Significant Difference”) post-hoc test was performed. Full test result tables are attached in 

Appendix 4. For the models of op. 135a/1, it was revealed that the difference between mean 

ratings for 135M0.4 and mean ratings for all other stimuli was significant (p<0.01), the ratings 

for 135M0.8 and 135M1.2 were different from the ratings for 135M0.4 and 135M1.6 (p<0.05), 

but did not significantly differ from each other. The listeners’ expression perception for human 

performance (135H) was significantly different only from the 135M0.4; however, it was also 

noticeably apart from the 135M1.6, at the margin of statistical significance (p<0.08). For the 

models of op. 73, listeners’ expressivity rating difference was significant for all pairs among 

73M0.8, 73M1.2 and 73M1.6 (p<0.01). Surprisingly, the mean rating for the least elastic model 

73M0.4 was higher than for the more elastic model 73M0.8 (0.54 and 0.48, respectively), but 

this difference was not statistically meaningful; among all stimuli, the rating for 73M0.4 was 

significantly different only from the rating for 73M1.6 (p<0.001). The human performance (73H) 

was rated significantly higher than 73M0.8 (p<0.01) and significantly lower than the most 
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expressive version 73M1.6 (p<0.01), but was not significantly different from 73M1.2 and 

73M0.4.  

The same statistical analysis was then performed on the Organists and Non-

Organists groups individually to investigate the possible differences in listeners’ responses in 

greater detail. Table 2 presents a results overview.  

As expected, the effect of the temporal elasticity on the listeners’ rating of expressivity 

was significant in all four groups, and the effect size as measured by 𝜂t" was large (see Table 5). 

The largest effect size was for the Organists’ ratings of the op. 135a/1 expression level. For op. 

73, the effect size was almost the same regardless of the organ experience. The slightest effect 

was achieved by Non-Organists while rating the op.135a/1 expression, which proved difficult.   

Table 5. Part 2 results overview for Organists and Non-Organists. 

 

 

The linear regression was significant in the same elasticity intervals as for all participants’ 

ratings (in the case of Organists and op. 73—marginally). Figures 19 and 20 show the mean 

listeners’ ratings and the respective linear trends for each group. 

 

 

                                                
12 Linear regression was made in the elasticity interval [0.4, 1.6] for op. 135a/1 and [0.8, 1.6] for op.73. 

Experience Piece Effect of temporal elasticity Effect size Linear trend12 

Organists op. 135a/1 𝐹(3, 84) = 21.57, 𝑝 < 0.001 𝜂t" = 0.43 𝑅" = 0.93, 𝑝 = 0.03 

Organists op. 73 𝐹(2.4, 66.3) = 14.3, 𝑝 < 0.001 𝜂t" = 0.34 𝑅" = 0.98, 𝑝 = 0.05 

Non-Organists op. 135a/1 𝐹(2.4, 56.5) = 5.36, 𝑝 < 0.005 𝜂t" = 0.19 𝑅" = 0.99, 𝑝 = 0.005 

Non-Organists op. 73 𝐹(2.6, 60.5) = 11.5, 𝑝 < 0.001 𝜂t" = 0.33 𝑅" = 0.99, 𝑝 = 0.000 
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A pairwise comparison of the listeners’ mean ratings to the simulated and human 

performances was made with the Turkey HSD post-hoc test, in this case, individually for each 

group. The full results tables are attached in Appendices 5 (for Organists) and 6 (for Non-

Organists). It can be observed that Organists were more coherent in their ratings than Non-

Organists, providing a more distinctive evaluation of the expressive impact. In particular, among 

the modelled stimuli, the difference in means of Non-Organists’ ratings was significant at the 

Figure 20. Results of the listening experiment, part 2 (Non-Organists group). a) - op. 135a/1, b) - op. 73. 
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Figure 19. Results of the listening experiment, part 2 (Organists group). a) - op. 135a/1, b) - op. 73. 
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0.01 level only for “edge” cases: 135M0.4 and 135M1.6, 73M0.4 and 73M1.6, 73M0.8 and 

73M1.6, whereas the Organists’ mean ratings were significantly different at the 0.05 level for 

73M0.4 and 73M1.6, 73M0.8 and 73M1.6, 73M1.2 and 73M1.6, as well as for all model pairs 

except 135M0.8 and 135M1.2 in op. 135a/1. The human performance was significantly more 

expressive than the lowest-scored models 135M0.4 (with 135H, p<0.01) and 73M0.8 (with 73H, 

p<0.01) for Non-Organists. For Organists, the difference was also significant for 135M0.4 and 

135H (p<0.01), however, for op. 73, only 73M1.6 and 73H were significantly distinguishable 

(p<0.01). 

Despite the observed difference, the overall rating trends were very similar for both 

Organists and Non-Organists, following the same patterns as the joint ratings for all participants. 

The performed two-way repeated measures ANOVA with temporal elasticity as the within-

subjects factor and the organ experience as the between-subjects factor revealed that the effect 

of organ experience on the mean listeners’ ratings was not statistically significant neither for op. 

135a/1 (𝐹(1, 51) = 0.29, 𝑝 = 0.59) or for op. 73 (𝐹(1, 51) = 0.73, 𝑝 = 0.78). 

 

IV.3 Discussion 

An empiric evaluation of the model revealed that the expressivity manifested by the 

temporal elasticity was clearly comprehensible for the modern listeners, both with or without 

prior organ experience. The significant linear trends showed that the most elastic models were 

rated as the most expressive, while the least (op. 135a/1) or second-least (op. 73) elastic models 

were rated as the least expressive.  

Despite the clarity of the linear trends, the experimental results also allow a non-linear 

interpolation. Figure 21 shows the summary for the listeners’ ratings for both pieces from Figures 
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17 and 18, but, for this time, with the hinge fit curves. Hinge approximation permits the definition 

of three areas, such that the elasticity values are significantly different between the areas, whereas 

remaining indistinguishable within them. The area I corresponds to the low, area II—to the 

medium and area III to the high expressivity rating (see Figure 21). It is interesting to notice that 

the medium area roughly coincides with the model’s best elasticity range defined in the previous 

Chapter III (see Figures 9 and 13), which empirically supports the proposed suggestion of this 

range as the “safest” performer’s expressive strategy.  

 

 

 

 

 

 

 

 

 

Another interesting moment is the difference in the listeners’ rating in the low elasticity 

range, which might be due to the local tempo variation at the beginning of the piece. More 

precisely, the change in elasticity value from 𝑒A = 0.4 to 𝑒A = 0.8 resulted in the noticeable tempo 

decrease for the opening notes (see Figures 8 and 12 in Chapter III), leading to the statistically 

significant increase of the listener’s expression rating for the initially slow piece (op. 135a/1) and 

the slight decrease of the rating for the initially fast piece (op. 73), which was not significant, 

though. This accords well with the experimental results in Vieillard et al. (2012), where it was 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Temporal elasticity

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Li
st

en
er

s 
ra

tin
g

op.135a/1
op.73

I II III

Figure 21. Hinge interpolation for the listeners’ ratings for op. 135a/1 (blue) and op. 73 (black). 
I, II and III show the areas of low, medium and high expressivity. 
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shown that the effect of expressiveness resulting from the slowing down the tempo was significant 

for the slow (sad) piece, whereas the observed positive correlation of higher tempo and higher 

expressiveness for the fast (happy) piece was not statistically reliable (Vieillard et al. 2012: Table 

1). For the other versions, with 𝑒A = 0.8, 𝑒A = 1.2, and 𝑒A = 1.6, the tempo values for the first few 

notes were the same because of the boundary conditions, and for these values, the listeners’ ratings 

followed a similar pattern for both pieces. This observation is important for the performance 

practice: it shows that in order to significantly increase the expressive impact, it is not enough just 

to play the fast piece faster (even with the technical proficiency); it is necessary to use stylistically 

appropriate phrasing patterns highlighting the musical structure—then it will be appreciated by the 

listeners and result in a significantly higher expressive impact. 

 

V. Temporal elasticity and performance analysis 

The temporal analysis of various audio recordings was performed in order to compare 

them with the model. The recordings in focus were made on different instruments (authentic and 

modern) and, in the case of the duple-meter model, performed by organists with diverse organ 

experience (organ amateurs and professional organists). An additional analysis featuring the 

history of performance practice strategies over the last decades was performed in the case of the 

triple-meter model, where only the professional recordings were taken into consideration (the 

recordings were generously provided by Max Reger Institute in Karlsruhe, especially for this 

research project). 

V.1 Beat-tracking systems for audio organ recordings 

Beat tracking analysis for organ audio recordings is an extremely challenging task. Because 

of very reverberant acoustic conditions for each given recording, it is not easy to use an automatic 
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procedure for onset detection or tempo estimation. Furthermore, there is no standard organ: every 

organ has its particular stops disposition; the action might be mechanical, pneumatic, electric or 

electro-pneumatic, as well as different organs do not respond in the same way to a given touch. 

The developed polyphonic texture of the piece makes it hard to determine the beat event when the 

active melody entrance might be confused with the down-beat, or the beats corresponding to the 

soft over legato articulation might be missing. Thus far, only one scientific research in beat 

tracking for the organ audio recordings was done (Jerkert 2004). But it was focused on the analysis 

of only terse music excerpts from fugues by J. S. Bach, and the beat-tracking procedure was done 

manually through visual inspection of the spectrogram. That is why a prior evaluation step was 

made here in order to confirm the appropriacy of selected automated and semi-automated beat 

tracking systems for German late Romantic organ music. 

In order to determine the most appropriate procedure for beat detection, an existing MIDI 

file (used in the previous section) was played back on a real organ and professionally recorded 

from the listener’s position in the church. The audio recording of this MIDI file was compared to 

the original MIDI track, and the original MIDI onset times were considered as the ground truth. 

According to Milligan and Bailey (2015), the onset detection algorithms, focused on periodicity, 

are more appropriate for the analysis of instrumental music with unclear soft onsets than the 

energy-based approaches for the onset detection procedure, commonly used for music with 

percussive sounds.  

Consequently, the initial onset detection was done with Tempogram Toolbox (Grosche and 

Müller 2011), based on the general beat-tracking assumption that the beats must occur in a periodic 

fashion, at least within a certain time window. This algorithm succeeded in detecting the majority 

of onsets at the 8th-note level, with some confusions in the fragments with significant local agogical 
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changes. These short fragments were refined manually using the BeatRoot system (Dixon 2007), 

displaying the musical data and beats in a graphical interface. BeatRoot was also used to add the 

onset times on the 16th -notes level where such note events were present. 

Three following sets of data were exported to Matlab and evaluated against the ground 

truth in terms of Precision, Recall, and F-measure: 

1) BR-beats detected initially by BeatRoot (without Tempogram clicks); 

2) TG-beats detected by Tempogram Toolbox (8th-notes level); 

3) TGBR-beats detected by Tempogram Toolbox and manually corrected by BeatRoot (8th-

notes level). 

The tolerance window was set as proposed in McKinney et al. (2007) to the one-fifth of 

the average ground truth inter-onset interval at the 8th-note level. The summary of the evaluation 

analysis is given in Table 6. 

Table 6. Evaluation of beat tracking systems. 

Data set F-measure Precision Recall 

BR 0.54 0.37 1 

TG 0.84 0.79 0.89 

TGBR 0.98 0.98 0.98 

 

The brief analysis of Table 6 shows that BeatRoot has a high Recall value (without false 

negatives detections) but a very low Precision, which is not acceptable for the current study. 

Tempogram Toolbox has a higher Precision value (fewer false positives detections) than BeatRoot 

but still contains some detections outside the tolerance window (see Figure 22). The manual 

correction with BeatRoot helped to fix this issue, providing the Precision equal to 0.98 with only 

one inaccurate detection for the whole piece.  
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    Figure 22. Beats detected by different beat tracking systems for the first 12 seconds of op. 135a/1. 

Thus, the combination of the Tempogram Toolbox with BeatRoot was proven to be an 

effective beat tracking system for extracting beats from organ audio files.  

 

V.2 Comparative performance analysis for the duple- and triple-meter models 

The following recordings of Max Reger’s op.135a/1 (duple-meter model) were taken from 

Naxos music library or downloaded from license-free Youtube videos:  

1) Jean-Baptist Dupont / Walcker organ (1904), professional organist (Dupont 2012); 

2) Ludger Lohmann / Link organ (1906), professional organist (Lohmann 1998); 

3) Bernhard Buttmann / restored Koulen organ (1911), professional organist (Buttmann 

2015); 

4) Thorsten Pirkl / Kreienbrink organ (1965), organ amateur (Pirkl 2016); 

5) Herman Pals / Hauptwerk/Sonarte organ (2012), organ amateur (Pals 2019). 
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All recordings were then analyzed with Tempogram Toolbox and BeatRoot. The data 

containing beat times at the 8th- and 16th-notes level (where present) was imported to Matlab for 

further processing. The local tempo was calculated at the 16th-notes level and compared to both 

symmetric and Improved symmetric models. Table 7 shows the outlines of the analysis (all 

coefficients R2 were significant at the level p<0.0001). 

Table 7. Regression analysis of op.135a/1 audio recordings against the model. 

 

 

According to the analysis, professional organists (Dupont, Lohmann, and Buttmann) tend 

to play more expressive than organ amateurs (Pirkl and Pals): the average values of temporal 

elasticity are 𝑒A = 0.71 (improved) and 𝑒A = 0.39 (symmetric) across the professional organists 

against the respective values 𝑒A = 0.6 and 𝑒A = 0.36 for the amateurs. In all five cases, the 

improved model gave better values of R2 than the symmetric model, thus confirming the 

appropriateness of modifications suggested in Chapter III. For both models, improved and 

symmetric, the average values for professionals 𝑅" = 0.6 and 𝑅" = 0.5 were slightly higher than 

the respective values for amateurs: 𝑅" = 0.54 and 𝑅" = 0.47 because the professional organists 

were more likely to be aware of advanced Riemannian phrasing principles (usually taught at the 

graduate school). 

Recording Optimal value of e0, 

Improved model 

R2 Optimal value of e0, 

Symmetric model 
R2 

Dupont 0.67 0.64 0.44 0.52 

Lohmann 0.77 0.55 0.35 0.46 

Buttmann 0.7 0.62 0.38 0.53 

Pirkl 0.63 0.46 0.39 0.43 

Pals 0.57 0.63 0.33 0.51 
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Figure 23. Values of temporal elasticity e0 depending on the organ action. 

It is also interesting to notice that the highest values for temporal elasticity were obtained 

for the recordings made on the period instruments with pneumatic action (see Figure 23). The most 

elastic performance with 𝑒A = 0.77 (Lohmann 1998) was recorded at the Link organ (1906) of the 

Evangelische Stadtkirche in Giengen an der Brenz, which is “one of the best-preserved instruments 

of the Reger period, and as such, ideally suited to the realization of the Bavarian composer’s 

music” (Fugatto 2020). Therefore, it is possible to conclude that the instrument’s type plays an 

important role in the performance expression, and historic organs allow performers the more 

elastic phrasing. 

In order to see the overall model performance in terms of its naturalness, the cross-

correlation analysis was made across all audio recordings, MIDI recording and two computed 

models: the symmetric model with 𝑒A = 0.38 (SM) and the improved symmetric model with 𝑒A =

0.7	(IM). The analysis results are presented in Table 8.  
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Table 8. Correlation matrix for audio recordings. 

 

 

As expected, the highest correlation among the non-simulated performances was between two 

professional interpretations of the piece at the organ with the same kind of action (pneumatic): 

𝑅 = 0.89 (Lohmann/Buttmann). The average correlation across the distinct professional 

recordings (including MIDI) 𝑅 = 0.77 is higher than the correlation between two amateurs 𝑅 =

0.63 and average cross-correlation between amateurs and professionals 𝑅 = 0.75. The average 

correlation across all recordings is 𝑅 = 0.67 and 𝑅 = 0.76 for the symmetric and the improved 

models, respectively (Figure 24). As shown in Figure 24, both correlation coefficients for 

symmetric and improved symmetric models fall within the interval [0.63, 0.77]; hence the model 

performance in terms of its naturalness outperforms the average amateur and is close to the 

professional human interpretation.  

 

R Dupont Lohmann Buttmann Pirkl Pals MIDI SM IM 

Dupont 1 0.78 0.81 0.71 0.78 0.73 0.71 0.8 

Lohmann 0.78 1 0.89 0.67 0.79 0.71 0.67 0.74 

Buttmann 0.81 0.89 1 0.69 0.86 0.72 0.73 0.79 

Pirkl 0.71 0.67 0.69 1 0.63 0.49 0.66 0.68 

Pals 0.78 0.79 0.86 0.63 1 0.73 0.64 0.79 

MIDI 0.73 0.71 0.72 0.49 0.73 1 0.65 0.8 

SM 0.71 0.67 0.73 0.66 0.64 0.65 1 0.92 

IM 0.8 0.74 0.79 0.68 0.79 0.8 0.92 1 
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Figure 24. Average cross-correlation between human performances (blue bars) and between models and 
human performances (red bars). 

For the triple-meter model (Max Reger’s op. 73, bars 133-138), only the professional 

recordings were investigated: 

1) Bernhard Buttmann / Sauer organ, Berlin Cathedral (Buttmann 2015, CD 2); 

2) Bernhard Haas / Rieger organ, Konzerthaus Wien (Haas 1997); 

3) Werner Jacob / Willi Peter Orgel, St. Nicolai Hamburg (Jacob 1973); 

4) Rosalinde Haas / Albiez organ, Frankfurt (Haas 2011); 

5) Martin Sander / Walcker organ, Riga Cathedral (Sander 1994); 

6) Phillip Steinhaus / Harrison organ, Church of the Advent, Boston (Steinhaus 1956); 

7) Heinz Wunderlich / Kemper-Orgel, Hauptkirche St. Jacobi, Hamburg (Wunderlich 

1980). 

All recordings were analyzed with Tempogram Toolbox and BeatRoot, then the data 

containing beat times at the 16th-notes level was imported to Matlab for processing. The local 
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tempo was calculated from Equation (6) and compared to the symmetric and improved triple-meter 

models described in Chapter III. Table 10 shows the outlines of the analysis.  

Table 9. Regression analysis of Max Reger’s op. 73 (bars 133–138) audio recordings against the model. 

 

 

It is possible to notice that, similar to the duple-meter model, the most elastic recordings 

were made at the period instruments. The recording with the highest value of temporal elasticity 

𝑒A = 1.52 was made by Martin Sander at the famous large Walcker organ in Riga Cathedral, which 

was built in 1883 and “represented an ideal instrument of the time when Reger was a student” 

(Sander 1994). Furthermore, this organ was mentioned in Hugo Riemann’s organ manual 

(Riemann 1888, 143), in which he provided an up-to-date disposition and his recommendations 

about the registration for this instrument. Thus, it was not surprising to find that the recording on 

this instrument (Sander 1994) gave the highest coefficient of determination (𝑅" = 0.51) against 

the symmetric model, which is indeed the most dogmatic mathematical implementation of 

Riemannian theory. The most “mechanical” (or the least elastic) performances were made on the 

relatively modern organs with mechanic action (such as Albiez organ in Frankfurt, built in 1983), 

Recording Optimal value of e0, 

Improved model 
R2 Optimal value of e0, 

Symmetric model 
R2 

Buttmann 1.20 0.56 0.40 0.49 

Haas, B. 0.96 0.58 0.30 0.49 

Jacob 0.70 0.48 0.58 0.46 

Haas, R. 0.65 0.45 0.40 0.42 

Sander 1.52 0.56 1.10 0.51 

Steinhaus 0.75 0.46 0.18 0.32 

Wunderlich 0.85 0.46 0.32 0.34 
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or on the organs with electric action (Willi Peter organ in Hamburg, built in 1966, and the Harrison 

organ in Boston, 1936).  

 

Figure 25. Values of temporal elasticity e0 and the recordings’ organs. 

Figure 25 shows the temporal elasticity and the respective organ used for the investigated 

recordings. Remarkably, the recording with the relatively high elasticity at the tracker (Kemper 

organ, Hamburg, 1968) was made by Heinz Wunderlich, a well-renowned interpret of German late 

Romantic music and student of Max Reger’s long-year friend Karl Straube. This is an important 

finding showing how the expressive performance of the late Romantic piece could be made even 

at the stylistically different instrument. 

The temporal elasticity concept allowed also to explore the changes in performance 

practice strategies over the last decades. Figure 26 depicts the temporal elasticity values, as well 
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as the mean recording’s tempo values against the recordings’ years. The professional human 

recording used for the analytical model evaluation in Chapter III was added to complete the picture. 

 

Figure 26. Temporal elasticity and mean tempo values depending on the recording year. 

From the graph above, we can see that the recordings in the 50s–80s show less elasticity 

and higher mean tempo values, which might be due to the preceding Orgelbewegung influence. In 

contrast, the recordings made in the 90s, with higher elasticity values and slower tempi, might 

signal the gradual return to the more authentic performance practice with respect to the late 

Romantic style and Riemannian principles. The contemporary performance palette includes a 

variety of interpretations with (hopefully) prevailing of the more elastic ones. It was interesting to 

find that despite the relatively small sample size, the mean tempo and temporal elasticity showed 

a statistically significant negative correlation 𝑅 = −0.7, 𝑝 < 0.05: the slower was the recording’s 

mean tempo, the higher was its expressive impact. 
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 V.3 Performance analysis of Max Reger’s recording 

The temporal elasticity concept was used to investigate Max Reger’s playing of his own music. 

The recording (Reger 1913) was made in 1913 in Freiburg im 

Breisgau on the newly built Welte Philharmonic organ (see 

disposition in Appendix 7). This two-manuals electro-pneumatic 

instrument was equipped with the reel mechanism and was 

initially conceived for the Titanic-like large Britannic ship; 

however, it was never installed there because of the beginning 

of World War I. Rumsey (2014) described Reger’s recording 

process as follows: “He [Reger] played 16 works of his own 

music for Welte, arriving in Freiburg in style around the 28th 

May 1913… He sat down at the Welte’s console and—

seemingly with minimal preparation—started recording.”   

Two sections from Max Reger’s Basso Ostinato op. 92/4 were analyzed here with the same 

steps as before for the op. 135a/1:  

1) building a symmetric (obviously, duple-meter) model,  

2) optimization procedure, and  

3) defining the weights coefficients to create an improved model.  

In the opening section (see Figure 28), the model was made from the second quarter note 

in bar 1 to the second quarter note in bar 9. The regression of Reger’s performance data against 

the symmetric model gave 𝑅" = 0.52, 𝑝 < 0.0001. Reger’s temporal elasticity value was 

relatively low, only 𝑒A = 0.18, which might be an explanation why performers sometimes did not 

Figure 27. Max Reger playing the 
Freiburg recording organ in May 1913 
(Rumsey 2014). 
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find Reger’s own organ recordings really expressive and considered him being “not the greatest 

organist of his time” (The Classical Music Guide Forums 2018).  

 

 

 

 

 

 

 

 

 

Reger’s differentiation of the phrasing levels was very logical and methodic: he clearly 

gave more weight to the Riemannian fundamental “motivic” level 4. Furthermore, level 3 (over 

the main repeated Ostinato pattern) and level 1 (approximately) marked by the two long slurs were 

also relatively strong. The weakest level in Reger’s performance was level two (over 2-bars 

segments), which did not contain any marked phrasing events in the score.  

Table 10. Coefficients kij for the Max Reger’s performance (best fit curve) and improved model. 

Levels kij, average value (best fit model curve) kij, improved model  

1 1.39 1.5 

2 0.019 0.5 

3 1.27 1.5 

4 2.73 2.5 

 

Long slurs: No long slur here: 

Figure 28. Basso Ostinato op. 92/4, bars 1–9 (Reger 1966). 



 

 56 

Table 10 shows the mean values of weight coefficients for Reger’s performance 

optimization and those chosen for the improved model. The improved model was built in 

accordance with the modifications described in Chapter III with the respective weight coefficients 

kij from Table 10; it gave a highly significant coefficient of determination 𝑅" = 0.64, 𝑝 < 0.0001.  

 Another interesting finding is Reger’s usage of slurring: Reger’s tempo profile (Figure 29) 

shows that the long slurs were used to shape the phrase (bars 2–4 and bars 6–8). In contrast, the 

short slurs were used only for articulation, resulting in the long tempo plateau in the second part, 

corresponding to the sections with the short slurs only (See Figure 28). Thus, it might be possible 

to guess the slurring from the tempo profile and vice versa, using the long phrasing slurs to 

determine the phrase boundaries for the timing simulation purpose. This observation would be 

highly beneficial to the computer modelling algorithm proposed in Chapter VI. 

 

Figure 29. Tempo profiles for Max Reger’s recording and modern recording (bars 1–9). 

 It was very insightful to compare the modern (my own) performance of the same section, 

recorded at the Casavant organ in The Church of Saint Andrew and Saint Paul in Montreal in 

October 2019. It could be observed that Reger’s tempo was remarkably slower than the tempo of 
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the modern performance (mean values 47.8 BPM and 56.6 BPM, respectively); however, this 

might be due to the technical inconsistencies while playing back the Reger’s initial recording rolls 

(Rumsey 2005).  

 In general, the modern performance compared to Max Reger’s was more elastic with 𝑒A =

0.3, as well as less determined by the model, neither symmetric (𝑅" = 0.5, 𝑝 < 0.0001.), nor 

improved (𝑅" = 0.61, 𝑝 < 0.0001.).The phrasing levels had a similar weight distribution, where 

the “motivic” level 4 was the most prominent, and level 2 was the weakest. Nevertheless, the 

modern performer preferred a short-scale phrasing at level 3 rather than beard the long-scale 

structure (level 1). 

 The analysis of another section of the piece (Figure 30, bars 26–34 with the model starting 

from the second quarter note) showed very similar results. The modern performance was less 

determined by the model than the Max Reger’s one (for the improved model, 𝑅" = 0.72	and 𝑅" =

0.6, respectively), and the temporal elasticity value was slightly higher for modern performance. 

 

Figure 30. Basso Ostinato op. 92/4, bars 26–34 (Reger 1966). 

Long slurs: 

No slur here: 
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Remarkably, Reger’s temporal elasticity increased over the piece and reached 𝑒A = 0.25	in this 

section; the modern performer’s elasticity remained the same for both excerpts (𝑒A = 0.3). As 

regards the levels’ distribution, the “Riemannian” motivic level 4 was still the most prominent for 

both performers, and level 2 was the weakest. In this section, Reger continued to phrase 

methodically clear the Ostinato and thus made level 3 relatively prominent. Modern performer, in 

this excerpt, paid less attention to the shaping of the repeated Ostinato but succeeded in shaping 

the long 4-bars phrase instead.  

Similar to the previous section, there was a visually noticeable correlation between the 

slurring in the music score (see Figure 30) and Max Reger’s tempo profile: there was a slightly 

descending quasi-linear tempo area which corresponded to the section in bars 31–32 without long 

slurs (see Figure 31, chunks 88–104). In contrast, the sections under slurs in bars 26–30, 30–31 

and 33–34 coincided with the arch-like local tempo shape (see Figure 31).  

 

Figure 31. Tempo profiles for Max Reger’s recording and modern recording (bars 26–34). 
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Reger’s coefficient of determination for the dogmatic symmetric model 𝑅" = 0.62	(𝑝 < 0.0001) 

was exceptionally high. This might indirectly confirm the influence of Riemann’s basic 

scholarship on Reger’s performing strategies. However, the results of the first part of my listening 

experiment in Chapter IV showed that the interpretation simulated with the symmetric model 

timing profile was significantly less comprehensible for the modern listener. 

 

VI. Temporal elasticity and computer modelling of expressive timing 

The proposed temporal elasticity model opens an important avenue towards expressive 

timing simulation. The symmetric timing model could be easily calculated by just putting the 

elasticity values from (3) into equation (6), but, according to my listening experiment, the listeners 

clearly preferred the improved model rather than the symmetric one (see Table 4 and Figure 14 in 

Chapter IV). To create an improved model, the weight coefficients kij in (4) should be determined 

before using the equation (6). In the previous Chapters it was done by the optimization procedure 

from the real performance data and the manual score analysis. An Artificial Intelligent system can 

provide an alternative solution, which would be more suitable for the computer timing simulation.  

 

 VI.1 Automatic detection of the weight coefficients 

To approach the automatic levels’ weighting problem, I created a Demo classifier based on 

two Machine Learning algorithms.13 The dataset contained 136 samples from the analyzed MIDI 

files of Max Reger’s op. 73, op.92 and op.135a (whole pieces and piece segments), as well as 

excerpts from Monologue by Rheinberger op. 162. All files were recorded at The Church of Saint 

                                                
13 Demo notebook is available at https://draginda.org/#myprojects 
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Andrew and Saint Paul in Montreal and processed analogously to the workflow described in 

Chapter III for the op. 135a and op. 73 (for the duple and triple-meter models, respectively). The 

obtained levels weight coefficients were put into three classes:  

1) Weak (if the mean level’s weight coefficient was less than 0.75, yielding 𝑘 = 0.5 for 

the improved model); 

2) Middle (if the level’s weight coefficient was more than 0.75 and less than 1.75, yielding 

𝑘 = 1 or 𝑘 = 1.5 for the improved model); 

3) Strong (if the level’s weight coefficient was higher than 1.75, yielding 𝑘 = 2 or	𝑘 = 2.5 

for the improved model). 

The following elements in a music score, which, according to Riemannian studies, could 

impact the phrasing (see Section II.2), were selected as input features: 

• Number of explicitly marked phrasing slurs in the score. 

• Number of supporting crescendo-diminuendo pairs under slurs. Only paired hairpins fully 

enclosed under the slur were counted; incomplete or non-paired hairpins were ignored and 

considered as pure dynamic markings with no relation to the phrasing. 

• Number of slurs ending with the fermata sign, signalizing the end of the choral sentence in 

the Choral Preludes or similar genres. 

• Mean tempo of the piece indicated in the score in BPM or as one of the common tempo 

indications (assigned to one three groups: slow, medium, fast). 

• Most frequent note duration, more known as music pulse.  

• First dynamic mark in the score. 

• Time signature of the piece (or piece’s segment in the case of changing meter). 

• Presence or absence of the final ritardando mark in the score. 
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• Stepwise dynamic changes at the beginning and the end of the level; multiple steps on the 

same level were summed up. 

• Overall number of notes in the score (quantitative information about music texture). 

Two other model-specific features were added to complete the set: 

• Number of semi-ellipses corresponding to this level in the model. 

• Temporal elasticity e0 of the main arch. 

Two algorithms were chosen to classify the level’s weight based on these features: Polynomial 

multiclass Logistic Regression (PLR) and Random Forest (RF). The rationale for this choice was 

their ability to handle the non-linear data, and, in the case of the Random Forest, also its high 

interpretability. 

PLR classifier performed best with the polynomial degree 2, the Newton-CG solver and a 

strong regularization term 𝐶 = 0.001. The achieved test accuracy was relatively poor (86%), with 

four misclassified level’s weights from the test set. Errors analysis showed that the most 

problematic to recognize was the Middle weights’ class with its three false negatives values. Table 

11 shows the Precision, Recall, and F-score values for this model. 

Table 11. PLR classifier: performance evaluation. 

Level F-measure Precision Recall 

Weak 0.89 0.80 1.00 

Middle 0.86 0.92 0.80 

Strong 0.84 0.80 0.89 

  

 RF classifier with 35 ensembled Decision Trees and Gini splitting criterion reached 

100% accuracy on the training set and achieved a remarkably high accuracy value on the test set, 

96%. RF misclassified only one weight coefficient from the test set; noticeably, the same 
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coefficient was wrongly predicted by the PLR as well. Presumably, there were some interpretation 

inconsistencies for this excerpt (Max Reger, op.135a/24, level 2); another cause could be the half-

note pulse of the piece, unique for this dataset. Obviously, more data with unusual pulse values 

would be beneficial for this model. Table 12 provides the RF evaluation outline. 

Table 12. RF classifier: performance evaluation. 

Level F-measure Precision Recall 

Weak 0.89 0.80 1.00 

Middle 0.97 1.00 0.93 

Strong 1.00 1.00 1.00 

  

It is noteworthy that the RF classifier achieved the perfect one for the Strong level’s F-

score because this level, mathematically, has the greatest effect on the resulting timing curve; the 

correct detection of its coefficients is essential for the model. 

An insightful result was obtained from the RF features’ analysis. It was revealed that the 

most important features for decision splits were the number of semi-ellipses (0.28), the number of 

slurs (0.14) and the number of notes (0.125). This was yet another confirmation for the suggestion 

in Chapter III that the slurring combined with the information about music structure and texture 

could serve as significant factors for the expressive phrasing. 

 

VI.2 Algorithm proposal 

The ability of an AI-based system to correctly predict the levels’ strength gives an excellent 

opportunity to simulate the expressive timing computationally without using the optimization 

procedure on the human performance data. The starting point for the proposed algorithm would be 

the symbolic music score file in MusicXML or in a similar format, supporting the slurring and 
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advanced dynamics notation. The expressive timing might be simulated then through the following 

steps: 

u Detecting all phrasing slurs and assigning them a respective level (usually, the 

approximately four-bars long section under slur represents level 1, approximately 

two bars long –> level 2, approximately one bar long –>level 3). The slur must be 

at least one bar long to be considered as the phrasing slur; otherwise, it should be 

ignored as an articulation indication. 

u Building a symmetric model; the remaining levels must be defined by appending 

the subsequent sections under the next slur or dividing the existing sections by two 

(for levels 1 and 2). 

u Adding the “motivic” level 4 according to the piece’s time signature (duple- or 

triple-meter model). 

u Determining the weight coefficients for each level with the AI-based classifier (for 

example, RF classifier as proposed in Section VI.1) and computing the resulting 

tempo curve from the improved model Equation (6). 

It is essential to notice here that the temporal elasticity of the global arch e0 was also an input 

parameter for the RF classifier from Section VI.1. By creating a fully automatic system, e0 should 

be chosen either from the proposed in Chapters III and IV “safest” area [0.8; 1.2] or slightly higher 

if the highly expressive performance is desired. After analyzing several case studies, my most 

generic recommendation for choosing e0 would be picking up the values from the range [0.8–0.9] 

for the slow or medium tempi and (0.9–1.2] for the virtuosic piece in a fast tempo.  

This proposed algorithm will work best for the short Romantic organ pieces with clear and 

consistent slurring. The resulted tempo curve might be applied to the equitemporal MIDI file of 
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the piece, which can then be played back, as it was done in the listening experiment. The complete 

engineering implementation of this system is, of course, outside the scope of this performance 

research paper but is already reserved for future work. 

I want to emphasize that the simulation of expressive performance could be beneficial if 

used as an investigation tool. As noticed by Crawford and Gibson (2009, 115), “the aim of 

modelling expressive performance should not be to replace or compete with a human in this 

domain, but to create models with which the complex nature of expressive performance can be 

better investigated and understood.”  

 

VII. Conclusion 

In the present thesis, for the first time, the mathematical model of the Riemannian motivic 

scheme was created and evaluated, both analytically and empirically, through the listening tests. 

The proposed model is based on music structure and, therefore, benefits from the methodological 

advantages of the previous structural models found in the literature, such as high determination 

potential (Todd 1992) or clear correlation with the expressive impact (Palmer 1996). The 

advantage of my model against its predecessors is in its unlikability from the complex harmonic 

analysis and its controllability by a single, easy interpretable parameter. The model has a two-fold 

application: it can be used in performance analysis, as well as in computer simulation of expressive 

timing. 

The model parameter temporal elasticity was proven to carry the expressive information 

of the organ performance in late Romantic style. The results of the listening experiment clearly 

showed that the most elastic models were rated as the most expressive, while the least or second-
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least elastic models were rated as the least expressive. The most reliable values of temporal 

elasticities for this model were found within the interval [0.8, 1.2]. 

This thesis has provided a deeper insight into the organ performance practice of the German 

late Romantic repertoire. In particular, it was found that the instrument type played an important 

role in the performance expression, and period organs allowed performers the more elastic 

phrasing. The obtained significant negative correlation between the tempo and temporal elasticity 

showed that the slower the recording’s mean tempo, the higher its expressive impact. 

The analysis of Max Reger’s performance undertaken here has extended the knowledge of 

authentic slurring in the late Romantic style. It was shown that, in accordance with Riemannian 

theory, slurs more than one-bar long were used to shape the phrase rather than being an articulation 

indication. The importance of slurring for the phrasing profile was also confirmed by the Random 

Forest features’ analysis performed in the Chapter VI. 

This work was based on a solid musicological foundation, Riemannian theory, which 

represented stylistically appropriate phrasing rules for the late Romantic organ music. The results 

of this work demonstrated that fulfilling these rules might be helpful for the modern performers to 

make their interpretations not only stylistically correct but also expressive and touching. I want to 

conclude my thesis with the following words of Ludger Lohmann (1995, 251): “Why should 

organists of today be interested in Hugo Riemann? As a composition teacher, Riemann influenced 

not only his student Max Reger—and thus one of the most important oeuvres in the organ 

repertoire, but, being one of the most renowned figures in European musical life around the turn 

of the century, also helped shape fundamental ideas about musical performance in a whole 

generation of musicians by his numerous writings, whose impact can still be felt today.”  
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VIII. Appendices 

Appendix 1 

A schematic illustration of the hierarchical structural representation that the model used as an input 

structure (Windsor and Clarke 1997, 135) 
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Appendix 2  

Music score used for the duple-meter model (Reger 1915).  
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Music score used for the triple-meter model (Reger 1904).  
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Appendix 3 

Part 1 experimental results for Organists group  

 

 

 

Part 1 experimental results for Non-Organists group  

 

 

 

 

Version N Mean SEM CI-95%, 

 Low 

CI-95%, 

High 

CI-83%, 

Low 

CI-83%, 

High 

135H 29 0.48 0.094 0.29 0.68 0.35 0.62 

135M 29 0.34 0.090 0.16 0.53 0.22 0.47 

135SM 29 0.17 0.071 0.03 0.32 0.07 0.27 

73H 29 0.45 0.094 0.26 0.64 0.32 0.58 

73M 29 0.34 0.090 0.16 0.53 0.22 0.47 

73SM 29 0.21 0.077 0.04 0.36 0.10 0.31 

Version N Mean SEM CI-95%, 

 Low 

CI-95%, 

High 

CI-83%, 

Low 

CI-83%, 

High 

135H 24 0.46 0.104 0.24 0.67 0.31 0.61 

135M 24 0.33 0.098 0.13 0.54 0.19 0.47 

135SM 24 0.21 0.085 0.03 0.38 0.09 0.33 

73H 24 0.42 0.103 0.20 0.63 0.27 0.56 

73M 24 0.46 0.104 0.24 0.67 0.31 0.61 

73SM 24 0.13 0.069 0.00 0.27 0.03 0.22 
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Appendix 4 

Descriptive statistics and Turkey HSD post-hoc test results for all participants (op. 135a/1) 

Dependent Variable: Mean rating, op. 135a/1   
Elasticity Mean Std. Deviation N 
.4 .3757 .17845 53 

.6** .5887 .18953 53 

.8 .5151 .14818 53 

1.2 .5662 .18992 53 
1.6 .6815 .21438 53 

Total .5454 .20972 265 

Tukey HSD   

(I) Elasticity (J) Elasticity 
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
.4 .6** -.2130* .03600 .000 -.3119 -.1141 

.8 -.1394* .03600 .001 -.2383 -.0405 
1.2 -.1906* .03600 .000 -.2895 -.0917 
1.6 -.3058* .03600 .000 -.4048 -.2069 

.6** .4 .2130* .03600 .000 .1141 .3119 
.8 .0736 .03600 .248 -.0253 .1725 
1.2 .0225 .03600 .971 -.0764 .1214 
1.6 -.0928 .03600 .077 -.1917 .0061 

.8 .4 .1394* .03600 .001 .0405 .2383 
.6** -.0736 .03600 .248 -.1725 .0253 
1.2 -.0511 .03600 .615 -.1500 .0478 
1.6 -.1664* .03600 .000 -.2653 -.0675 

1.2 .4 .1906* .03600 .000 .0917 .2895 
.6** -.0225 .03600 .971 -.1214 .0764 
.8 .0511 .03600 .615 -.0478 .1500 
1.6 -.1153* .03600 .013 -.2142 -.0164 

1.6 .4 .3058* .03600 .000 .2069 .4048 
.6** .0928 .03600 .077 -.0061 .1917 
.8 .1664* .03600 .000 .0675 .2653 
1.2 .1153* .03600 .013 .0164 .2142 

 
Based on observed means. 
 The error term is Mean Square (Error) = .034. 
*. The mean difference is significant at the .05 level. 
**. Human performance (135H). 
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Descriptive statistics and Turkey HSD post-hoc test results for all participants (op. 73) 
 
Dependent Variable: Mean rating, op. 73    
Elasticity Mean Std. Deviation N 
.4 .5445 .18123 53 
.8 .4781 .20973 53 
1.0** .6332 .24731 53 
1.2 .6104 .15229 53 
1.6 .7606 .13058 53 
Total .6054 .21000 265 
 
Tukey HSD   

(I) Elasticity (J) Elasticity 
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
.4 .8 .0664 .03668 .370 -.0343 .1672 

1.0** -.0887 .03668 .114 -.1894 .0121 
1.2 -.0658 .03668 .378 -.1666 .0349 
1.6 -.2160* .03668 .000 -.3168 -.1153 

.8 .4 -.0664 .03668 .370 -.1672 .0343 
1.0** -.1551* .03668 .000 -.2558 -.0543 
1.2 -.1323* .03668 .003 -.2330 -.0315 
1.6 -.2825* .03668 .000 -.3832 -.1817 

1.0** .4 .0887 .03668 .114 -.0121 .1894 
.8 .1551* .03668 .000 .0543 .2558 
1.2 .0228 .03668 .971 -.0779 .1236 
1.6 -.1274* .03668 .005 -.2281 -.0266 

1.2 .4 .0658 .03668 .378 -.0349 .1666 
.8 .1323* .03668 .003 .0315 .2330 
1.0** -.0228 .03668 .971 -.1236 .0779 
1.6 -.1502* .03668 .001 -.2509 -.0494 

1.6 .4 .2160* .03668 .000 .1153 .3168 
.8 .2825* .03668 .000 .1817 .3832 
1.0** .1274* .03668 .005 .0266 .2281 
1.2 .1502* .03668 .001 .0494 .2509 

 
 Based on observed means. 
 The error term is Mean Square (Error) = .036. 
*. The mean difference is significant at the .05 level. 
**. Human performance (73H). 
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Appendix 5 

Descriptive statistics and Turkey HSD post-hoc test results for Organists group (op. 135a/1) 
 

Dependent Variable: Mean rating, op.135a/1 (Organists)   
Elasticity Mean Std. Deviation N 
.4 .3376 .19222 29 

.6** .5769 .17244 29 

.8 .5352 .13845 29 

1.2 .5652 .19897 29 
1.6 .7379 .20348 29 

Total .5506 .22108 145 
 

Tukey HSD   

(I) Elasticity (J) Elasticity  
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
.4 .6** -.2393* .04797 .000 -.3719 -.1067 

.8 -.1976* .04797 .001 -.3302 -.0650 
1.2 -.2276* .04797 .000 -.3602 -.0950 
1.6 -.4003* .04797 .000 -.5329 -.2678 

.6** .4 .2393* .04797 .000 .1067 .3719 
.8 .0417 .04797 .907 -.0909 .1743 
1.2 .0117 .04797 .999 -.1209 .1443 
1.6 -.1610* .04797 .009 -.2936 -.0285 

.8 .4 .1976* .04797 .001 .0650 .3302 
.6** -.0417 .04797 .907 -.1743 .0909 
1.2 -.0300 .04797 .971 -.1626 .1026 
1.6 -.2028* .04797 .000 -.3353 -.0702 

1.2 .4 .2276* .04797 .000 .0950 .3602 
.6** -.0117 .04797 .999 -.1443 .1209 
.8 .0300 .04797 .971 -.1026 .1626 
1.6 -.1728* .04797 .004 -.3053 -.0402 

1.6 .4 .4003* .04797 .000 .2678 .5329 
.6** .1610* .04797 .009 .0285 .2936 
.8 .2028* .04797 .000 .0702 .3353 
1.2 .1728* .04797 .004 .0402 .3053 

 

Based on observed means. 
 The error term is Mean Square (Error) = .033. 
*. The mean difference is significant at the .05 level. 
**. Human performance (135H). 
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Descriptive statistics and Turkey HSD post-hoc test results for Organists group (op. 73) 
 
Dependent Variable: Mean rating, op. 73 (Organists) 
Elasticity  Mean Std. Deviation N 
.4 .5445 .17373 29 
.8 .5055 .19850 29 
1.0** .5990 .24857 29 
1.2 .6200 .13638 29 
1.6 .7721 .10874 29 
Total .6082 .19964 145 
 
Tukey HSD   

(I) Elasticity (J) Elasticity  
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
.4 .8 .0390 .04724 .923 -.0916 .1695 

1.0** -.0545 .04724 .778 -.1850 .0761 

1.2 -.0755 .04724 .501 -.2061 .0550 

1.6 -.2276* .04724 .000 -.3581 -.0970 

.8 .4 -.0390 .04724 .923 -.1695 .0916 
1.0** -.0934 .04724 .282 -.2240 .0371 

1.2 -.1145 .04724 .115 -.2450 .0161 

1.6 -.2666* .04724 .000 -.3971 -.1360 

1.0** .4 .0545 .04724 .778 -.0761 .1850 

.8 .0934 .04724 .282 -.0371 .2240 

1.2 -.0210 .04724 .992 -.1516 .1095 

1.6 -.1731* .04724 .003 -.3037 -.0425 

1.2 .4 .0755 .04724 .501 -.0550 .2061 
.8 .1145 .04724 .115 -.0161 .2450 

1.0** .0210 .04724 .992 -.1095 .1516 

1.6 -.1521* .04724 .014 -.2826 -.0215 

1.6 .4 .2276* .04724 .000 .0970 .3581 
.8 .2666* .04724 .000 .1360 .3971 

1.0** .1731* .04724 .003 .0425 .3037 

1.2 .1521* .04724 .014 .0215 .2826 
 

Based on observed means. 
 The error term is Mean Square (Error) = .032. 
*. The mean difference is significant at the .05 level. 

**. Human performance (73H). 
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Appendix 6 

Descriptive statistics and Turkey HSD post-hoc test results for Non-Organists group (op. 135a/1) 
 
Dependent Variable: Mean rating, op.135a/1 (Non-Organists)   
Elasticity  Mean Std. Deviation N 
.4 .4217 .15159 24 
.6** .6029 .21126 24 
.8 .4908 .15869 24 
1.2 .5675 .18262 24 
1.6 .6133 .21128 24 
Total .5392 .19584 120 

 

Tukey HSD   

(I) Elasticity (J) Elasticity  
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
.4 .6** -.1813* .05335 .008 -.3291 -.0334 

.8 -.0692 .05335 .694 -.2170 .0787 

1.2 -.1458 .05335 .055 -.2937 .0020 

1.6 -.1917* .05335 .004 -.3395 -.0438 

.6** .4 .1813* .05335 .008 .0334 .3291 
.8 .1121 .05335 .227 -.0358 .2599 

1.2 .0354 .05335 .964 -.1124 .1833 

1.6 -.0104 .05335 1.000 -.1583 .1374 

.8 .4 .0692 .05335 .694 -.0787 .2170 
.6** -.1121 .05335 .227 -.2599 .0358 

1.2 -.0767 .05335 .605 -.2245 .0712 

1.6 -.1225 .05335 .154 -.2704 .0254 

1.2 .4 .1458 .05335 .055 -.0020 .2937 
.6** -.0354 .05335 .964 -.1833 .1124 

.8 .0767 .05335 .605 -.0712 .2245 

1.6 -.0458 .05335 .911 -.1937 .1020 

1.6 .4 .1917* .05335 .004 .0438 .3395 
.6** .0104 .05335 1.000 -.1374 .1583 
.8 .1225 .05335 .154 -.0254 .2704 
1.2 .0458 .05335 .911 -.1020 .1937 

 

Based on observed means. 
 The error term is Mean Square (Error) = .034. 
*. The mean difference is significant at the .05 level. 
**. Human performance (135H). 
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Descriptive statistics and Turkey HSD post-hoc test results for Non-Organists group (op. 73) 
 

Dependent Variable: Mean rating, op. 73 (Non-Organists) 
Elasticity  Mean Std. Deviation N 
.4 .5446 .19368 24 
.8 .4450 .22224 24 
1.0** .6746 .24454 24 
1.2 .5988 .17185 24 
1.6 .7467 .15423 24 
Total .6019 .22267 120 

 

Tukey HSD   

(I) Elasticity  (J) Elasticity  
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
.4 .8 .0996 .05774 .423 -.0604 .2596 

1.0** -.1300 .05774 .169 -.2900 .0300 

1.2 -.0542 .05774 .881 -.2142 .1059 

1.6 -.2021* .05774 .006 -.3621 -.0421 

.8 .4 -.0996 .05774 .423 -.2596 .0604 
1.0** -.2296* .05774 .001 -.3896 -.0696 

1.2 -.1538 .05774 .066 -.3138 .0063 
1.6 -.3017* .05774 .000 -.4617 -.1416 

1.0** .4 .1300 .05774 .169 -.0300 .2900 
.8 .2296* .05774 .001 .0696 .3896 

1.2 .0758 .05774 .683 -.0842 .2359 

1.6 -.0721 .05774 .723 -.2321 .0879 
1.2 .4 .0542 .05774 .881 -.1059 .2142 

.8 .1538 .05774 .066 -.0063 .3138 

1.0** -.0758 .05774 .683 -.2359 .0842 

1.6 -.1479 .05774 .084 -.3079 .0121 

1.6 .4 .2021* .05774 .006 .0421 .3621 
.8 .3017* .05774 .000 .1416 .4617 

1.0** .0721 .05774 .723 -.0879 .2321 

1.2 .1479 .05774 .084 -.0121 .3079 
 

Based on observed means. 
 The error term is Mean Square (Error) = .040. 
*. The mean difference is significant at the .05 level. 
**. Human performance (73H). 
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Appendix 7 

Disposition of the Welte organ used for Max Reger’s recording (Rumsey 2005). 
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